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Introduced as a model for hyperchaos, the generalizesIRosystem of dimensidd is obtained by linearly
coupling N—3 additional degrees of freedom to the originalsBler equation. Under variation of a single
control parameter, it is able to exhibit the chaotic hierarchy ranging from fixed points via limit cycles and tori
to chaotic and, finally, hyperchaotic attractors. Through the help of a mode transformation, we reveal a
structural symmetry of the generalized$Rter system. The latter will allow us to interpret the number, shape,
and location in phase space of the observed coexisting attractors within a common scheme for arbitrary odd
dimensionN. The appearance of hyperchaos is explained in terms of interacting coexisting attractors. In a
second part, we investigate the Lyapunov spectra and related properties of the generaleddystem as a
function of the dimensiolN. We find scaling properties which are not similar to those found in homogeneous,
spatially extended systems, indicating that the high-dimensional chaotic dynamics of the generaigled Ro
system fundamentally differs from spatiotemporal chaos. If the time scale is chosen properly, though, a
universal scaling function of the Lyapunov exponents is found, which is related to the real part of the eigen-
values of an unstable fixed poifi§1063-651X97)13410-9

PACS numbd(s): 05.45+b

[. INTRODUCTION coupling additional degrees of freedom to the original
Rossler system. The structure of the GRS of dimensiois
Chaotic dynamics has been intensively investigated withthat of anN— 1 dimensional linear subsystem that is coupled
the help of simple low-dimensional models such as the Loto one nonlinear variable. As will be shown, the GRS pre-
renz[1] or the R@sler systeni2]. Because of the restricted serves essential characteristics of thesfer system while
phase space, only low-dimensional chaotic motion is obextending it to a phase space of arbitrary dimen$iorThis
served in these systems. Low-dimensional chaos can also bélows one to study the influence of the discrete parameter
observed in naturg3], although the underlying dynamical N, without having to compare completely different systems.
systems have an infinite number of degrees of freedom. One Baier and Sahl¢7] demonstrated that the GRS does, in-
may wonder: What is the connection of this low-dimensionaldeed, show hyperchaotic dynamics with an increasing num-
chaos to the truly high-dimensional states that may arise olier of positive Lyapunov exponents for increasiNg The
of chaos under variation of one control parameter? How doeGRS realizes one possible path through the complete chaotic
the transition from the low-dimensional to the high- hierarchy from a stable fixed point via periodic orbits and
dimensional states take place? chaos up to hyperchaos. WW&] introduced a mode transfor-
Consider the attractors of dissipative ordinary differentialmation of the GRS based on the numerical solution of the
equations under variation of the dimensigrof phase space. linear subsystem. In the present paper, we will restate the
Rossler[4] postulated a chaotic hierarchy where more andmode transformation based on a semianalytical solution of
more qualitatively new forms of complex motion develop the linear subsystem. The mode transformation will then be
with increasing dimension: In one dimension, only stableused to analyze the dynamics of the GRS with arbitrary di-
fixed points are encountered. In two dimensions, periodignensionN in phase space. In Sec. Il, the GRS is introduced
orbits can also exist. In three dimensions, the possibility oand general properties of the GRS are discussed. In Sec. Il
quasiperiodicity and chaos arises. Thus, at the lower end ofe deal with the mode transformation and the concept of
the hierarchy, the well-known low-dimensional dynamical structural symmetry, that later on will allow us to understand
states of motion can be found. Somewhere high up in théhe number, form, and location of the coexisting attractors of
hierarchy, things like turbulence and noise may be locatedhe GRS. Subsequently, we numerically investigate the dy-
One crucial question is how one can distinguish and charadiamics of the GRS in phase space for the case$ and 7
terize the higher steps of the hierarchy. A provisional classiin Sec. IV. We interpret the observed dynamics within a
fication can be made in terms of Lyapunov expondbis  general scheme that enables us to predict the structure of the
For dynamical states with more than one positive Lyapunoattractors for higheN. In Sec. V, then, we investigate the
exponent, the term hyperchaos has been cdifgdn order GRS in the hyperchaotic state for different values of the
to study the full chaotic hierarchy, Baier and Saigintro-  dimensionN. We report scaling properties of the number of
duced a class of model equations, the generalizessl@o positive Lyapunov exponents, the Lyapunov dimension, the
system(GRS. Starting from the Rssler system as one of the metric entropy, and the Lyapunov spectra as a functidn.of
simplest and best understood nonlinear ordinary differential’he limit N— oo is discussed in view of the literature on that
equations that exhibit chaos, the GRS is obtained by linearlgubject.
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Il. GENERAL PROPERTIES OF THE GENERALIZED Ill. MODE PICTURE

ROSSLER SYSTEM .
In Sec. lll, we develop the mode picture of the GRS.

First, we present the solution of the linear subsystem. Here-
with, we can transform the GRS into a mode picture, where
d the linear subsystenx consists of harmonic oscillators,
— X(t)=Ax(t) —xn(t)en—1. (1)  which are coupled only via the nonlinear trigger variakle

dt In the mode picture, we are in the position to explain the idea

The GRS is given by

q of the structural symmetry, which will be of central impor-

— XN (t) =&+ bxy(t) (Xy_1(t) —d), ) tance for u_nderstgndmg the dynamics (_)f the G_RS in subse-

dt quent sections. Finally, we show the fixed points together
with their stability properties.

where
-1 0 0 A. Semianalytical solution of the linear subsystem
1 0 -1 Consider the linear subsysteniEq. (1)]. Here we restate
. XlFt) the equations in component form as a linear chain with
A=l 0 1 = =1 0 [, x(t)= ‘ ; boundary conditions:
:oo 1 0 -1 Xn-1(1) J
0 1 g Xn=Xn-1"Xn+1, ne{l,... N—1},
0
. XOZ axl,
-1 o |- X(t),ey_1 e RV
XN:O. (3)

1

. . . . To solve the linear subsystem) an exponential ansatz is
It is composed of aN—1-dimensional linear subsystem

and one nonlinear variablg,. Qualitatively, the mechanism

of instability of _the GRS is the same as that of thesRler Xons1=C0g (2n+ 1)k+ ol

system for all dimensionl. The positive feedback or auto-

catalytic process that is controlled by the paramateauses N—3

an expansive dynamics of the GRS around the origin. As for ne(o, o _}

long asxy_; remains well below the threshottl of xy, Xy

adiabatically follows its equilibrium value/b(d—xy_1), N_1

and does not influence the linear subsysterappreciably. . i -

When xy_; comes close to or exceeds xy will start to  X2n=C SInN(2nk+ g)et for ne{o, T

grow rapidly, thereby folding the system back to a state of 4

lower amplitude[via ey_; in Eq. (1)]. This time develop-

ment of xy of long intervals of small amplitude interrupted wherek is the wave number of the eigenmodes, &n(k)

by short spikes leads us to cal|, the nonlinear trigger the corresponding frequency with a specific dispersion rela-
One of the three parametessb, andd can be eliminated tion. Substituting ansat@) into chain(3) yields

by rescaling the amplitude of(xy). In the form the equa-

tions are given in Eqg1) and(2), they are scaled in time in c=—i,

such a way that théangulaj eigenfrequencies of the linear

subsystem lie in the intervdD,2] for all values ofN (see ) N—1

Sec. |||). QimZZSII‘(kim), me[l,...,T],
The divergence of the GRS &+ b(xy_,—d), indepen-

dent of N. Thus the GRS is dissipative, {ky_,)<d—a/b om—1 1

(the angular brackets denote the time aveyaghis is true Kip= =% oN TN PEme

for all parameter values to be considered in the following.
For oddN, the linear subsystemcan be transformed into
(N—1)/2 harmonic oscillators that are coupled only via the
nonlinear triggerxy, as will be shown in Sec. llicompare
also Ref[8]). For evernN, the linear subsystem can be trans-
formed into N—2)/2 oscillators together with one variable, TheseN—1 eigenmodes are a complete solution of tthe
which simply grows exponentially. That means, there is one-1 dimensional linear subsystexrfor odd N. The solution
positive real eigenvalue in addition tdN(-2)/2 pairs of is analytical up to a complex correctian. ,, to the allowed
complex conjugate eigenvalues. This leads to a qualitativelyvave numbers..,,, which is determined by a transcendent
different dynamics. See the remark at the end of Sec. Il Bequation. Foma=0, this equation can be solved, giving
for clarifying this point. In the present paper, we restrict
ourselves to the case of odd =0,

. - _2m-1_ N-1 ]
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o 2m-1 N N N-1 5
=N ™ Wheremejl,... ——. (6)

For a<1, there are —1)/2 pairs of complex conjugate
eigenvalues @,,Q_,), where Q,=-Q_,. The corre-
sponding pairs of eigenmodes represent harmonic oscillators
with angular frequencies,,= R&X),,, and autocatalytic coef-
ficients a,,=—2 ImQ,,,. The complex correctiong. , to

the values ok, for a#0 can easily be expanded abaut
=0. The expansion is up to the order af

om-1 N—-1 .
+ asin

dm=lia cos{ 5N 7 5N

+0(ad). (7

*

2m—1 )
o

FIG. 1. Schematical representation of the structure of the GRS
In the considered range afe[0,0.35, this is an excel- in (a) the Baier-Sahle picture, arit) the mode picture. Each circle
lent approximationthowever, in the subsequent analysis, werepresents one linear degree of freedom, and the square represents a
have numerically calculated the eigenvalues and eigenve®onlinear degree of freedom.
tors of A in order to minimize errops The imaginary part of ) _ _ o
@, determines the autocatalytic coefficieny. Itis linearin ~ form (via amplitude factors We choose this coupling in
a up toO(a%). The real part leads to a correctionaf,. But ~ Such a way that the resulting equations are
for a€[0,0.39, this correction is very small, i.e., the fre- d
guencies of the oscillators are almost independeatiofthe — 7(t)=Bz(t) —xy(t)C
considered range. From E@), we infer that the frequencies dt
of the oscillators are boundg@<w<2 for all N) and we g (12(N-1)
expect the autocorrelation ti in the case of an unstable
dyﬁamics to be independentn;? Additionally, the velocity dt XN(t):8+bXN(t)< mzzl sz_d) - ®
of signals of frequencyw traversing the linear subsystem
equals 2cds Therefore, the timers a signal takes to Wwhere
traverse the linear subsysteffiom x; to X1y or back, 5
since the linear subsystem allows for a bidirectional transport ap —wp 0 0
of signalg is expected to be approximatelN/2. 1 0
. B=| O 0
B. Mode transformation

2
. . dN— —WN_—
We have solved the linear subsystenThe next step is to (N-1)i2 (N-1)/2

transform it into its eigensystem. The transformed equa- o .. 0 1 0
tions for y are completely decoupleths the matrixA is . WN-1) )
transformed into a diagonal matjixThus we can treat the FOf@m, it holds thatx 23 am=2a, as the divergence of
different oscillators independently. The idea of the following the GRS is not affected by the transformatiordenotes the
steps of the transformation is to bring the oscillators tha/ector of coupling constants af, to the components d. If
correspond to pairs of complex conjugate eigenvalues into 1€ complete transformation is calleti(i.e.,z=U""x), then
form that is as similar to the oscillator of the original&ter ~ the vector of coupling constantsis c= U 'ey_;. Fora

system as possible. The oscillators are of the form =0, we have
d Yo 1)) [iQm 0 ) Yor_1(t) c=(1/N)[0,(cok;)?,0(coskp)?, . .. ,0{cok(n-1)2)*]".
dt| yom(t) /| 0 —iQm/\ Yam(t) This mode transformatiogonverts the GRS into a system of

) o . oscillators with frequencies,, and autocatalytic coefficients
It can be considered as the principal value decomposition of, that are coupled solely via the nonlinear trigggr. The

the following Rassler-like oscillator: coupling has a special form: the oscillators couple to the
2 trigger only with the sum of their variables,,,, i.e., they
d (ZZml(t) _[T@m T Wnm 22m1(t)> couple toxy identically. The coupling ofky back toz is
dt | Zom(t) 1 0 Zom(t) ) different for the different oscillators. In the following, we

call the original form of the GRS thBaier-Sahle pictureand
In the following, these oscillators are callegscillator the transformed form thenode pictureln Fig. 1, the struc-
(Zom-1,Zom)- For each variable of the linear subsystem tures of the Baier-Sahle picture and the mode picture are
one can choose one complex factor of normalization. It catompared. Each linear degree of freedom is represented by a
be utilized to make the entire transformation reéah phase circle, each nonlinear degree of freedom by a square. Cou-
factorg, and to give the coupling to the nonlinearity plings are shown as connecting lines. In the Baier-Sahle pic-
xy—Wwhich is not touched by the transformation—a certainture, the similarity of the GRS to a spatially extended system
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is most obvious: the autocatalytic process and the nonlinear ' '
triggerxy can be considered as the boundary conditions of a ~ 0-0002
homogeneous linear chain. On the other hand, in the mode

picture, the dynamics of the GRS can be understood as the  0.0001
interaction of different oscillators, that are coupled only via o,

one nonlinear trigger. As the triggesy influences the dy- 0.0000
namics of the linear subsystem only during the presence of Ta -

the spikes, the effect of coupling is restricted to these short 00, 0‘2 1
intervals in time. This allows us to observe the dynamics of

the different oscillators independently in the respective pro-
jections of phase spaceee Sec. V. . .
For even values oN, one finds one positive real eigen- 0.0055 0.0060 0.0065 0.0070
value of the linear subsystem far>0. In the mode picture, 4
this corresponds to one exponentially growing degree of FIG. 2. The real parts of the eigenvalues of the central fixed
freedom, which is coupled to the nonlinear trigggrin the point (x(l),xﬁ)) close to the Hopf bifurcations that give rise to the
same way as the even coordinates of the oscillators. Theoexisting attractorsN=7) plotted as a function of parameter
contribution of the nonlinear trigger to the time derivative of

-0.0002 1

this exponential mode is always negative. Thus, if once the X =x1=... =x(1.2
exponential mode is pushed to a negative value by the non- d g\2 o2
linear trigger, it will escape te-<. This mechanism, in gen- = =] ==
eral, leads to a global instability of the GRS for ewén 2a 2a ab] ~ 9
>((21,2) — X21,2) — . — Xg\llf)l
C. Structural symmetry d 412 ealt2
The mode picture reveals the GRS to consist of harmonic =5 + (E) Y

oscillators &,m—1.Zom), that are identically coupled to the

nonlinear triggexy (compare Fig. 1 A perfectly symmetric  Here the minus signs belong to indéX. The fixed point
system of the same structure as that. in Figh)li.e., one (x(l),x&l)) lies close to the origin of the systeffor £=0, it

with .|den.t|cal coefficients for each qscﬂlator, woqld be sym-\would be the origin Accordingly, the stability analysis of
metric with respect to any permutation of the oscillators. Thepis fixed point yields, in a good approximation, the eigen-
invariant manifolds of such a SyStem, SpeCifically the Orbit%nodes of the linear subsystem. The additioNah eigen_
and attractors, would have to obey this symmetry. For thealue is strongly attractive. It corresponds to the exponential
invariant manifolds, there are two possibilities. Either theydecay ofxy to e/(bd—xy_;) and its value is approximately
show the full symmetry in themselves, i.e., they are symmet-—hd, as is to be expected. On the unstable manifold of this
ric with respect to any permutation of the oscillators. Or theyfixed point, the GRS expands until it is folded back by a
have coexisting mirror images, such that the union of themrigger event of . The presence of the nonlinear trigggy
obeys the full symmetry. In the GRS, the symmetry is bro-slightly stabilizes the eigenmodes, such that they no longer
ken merely by the difference in the frequencies, auto- become unstable a=0, but approximately at=0.006.
catalytic coefficientsy,,, and coupling constants,. Never-  Interestingly, the oscillators that become unstable first are the
theless, the symmetry is preserved as a qualitative feature ehes that have a larger autocatalytic coefficiepnfor higher

the dynamics, as will be shown later on. We call this prop-values ofa (see Fig. 2

erty structural symmetryFor arbitrary oddN, the structural At the fixed point &), x{"), one can already perceive the
symmetry will be utilized to understand and predict the num-fingerprint of the structural symmetry: for each oscillator of
ber, shape, and location of the attractors of the GRS in phagée GRS, there is an OSCi”atOI'y instability of the inner fixed
space for moderate values of the autocatalytic coeffigient Ppoint (x(*),x{”). The symmetry breaking is responsible for
The first manifestation of the structural symmetry can bethe difference in the eigenvalues of the fixed point. It will be

point (x(,x{)) gives rise to a coexisting attractor of the

D. Fixed points GRS. The fixed pointx®,x{?)) governs the folding process

. . ) . of the GRS. However, none of the attractors ever comes
The fixed points of a dynamical system are the pivotsygge to this fixed point.

around which the system evolves. Thus it is essential to in-
vestigate the stability properties of the fixed points, if one
wants to develop any understanding of a dynamical system.
For oddN, the GRS has two fixed points which are the same
in all odd dimension§\, in the sense that the common linear  In the following section, the mode picture and the concept
coordinates and the nonlinear coordinate are identical for angf structural symmetry will be utilized to develop an under-
two GRS'’s of differentN. The two fixed points aréfor odd  standing of the dynamics of the GRSNadimensional phase
N) space. At first, we discuss the cade=5 in some detail. It

IV. DYNAMICS OF THE GENERALIZED RO SSLER
SYSTEM IN PHASE SPACE
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FIG. 3. Bifurcation diagram foN=5 under
variation of a. Shown is the projection of the
Poincaresection ontoz, (intersection atz;=0;
the parameters are=0.1,b=4, andd=2).

2 —,_..wllllfﬁmi i

Attractor 1 THek

0.04 0.06 0.08 0.10 0.12 0.14
a

will be demonstrated that for values ak0.09 two attrac- As one increasea from a=0, the fixed point near the
tors coexist. For higher values af they interact in several origin becomes unstable at abca#=0.0006. One after the
crises. Finally, the two attractors merge into one hyperchaether shortly, the two attractors emerge in two subsequent
otic attractor. This scenario of three parameter regimes ofiopf bifurcations as limit cycles. These two periodic orbits
coexisting attractors, interacting attractors, and one large hyconstitute the basis for all further development of the attrac-
perchaotic attractor will then be shown to hold in the Caqurs_ A|though they become unstable at some point, they ex-
N=7 as well. Finally, we postulate that the dynamics of thejst yp to the highest values af In the following, they will
GRS in arbitrary odd dimensioN can be explained by ex- pe referred to as thperiod-1 limit cyclesof the two attrac-
trapolating this scheme. For all numerical calculations, wegrs. Attractor 1 develops as a result of the instability that
have restricted ourselves to the variationMfand a. The corresponds to oscillatorz{,z,) in the mode picture. Ac-

other parameters remain constant at the valie®.1, b cordingly, attractor 2 develops out of£3,2,). In Fig. 5, two

=4, andd=2. phase-space projections of the period-1 limit cycle of attrac-
_ tor 1 are shown: one onto oscillatar;(z,) together with the
A. Numerical study of the caseN =5 nonlinear trigger variables, and the other onto oscillator

In the mode picture, the five-dimensional GRS consists of Z3,24) together withxs. The amplitude of oscillatorzg, z,)
two oscillators that are coupled via the nonlinear trigger.is negligible compared with that of oscillatoz,(,z,). Here,
First, we present a bifurcation diagraifiig. 3) and the cor- the dynamics of the GRS is completely dominated by
responding Lyapunov spectrufffig. 4) under variation of (z;,Z,) together withxs. In general, the frequencies of the
the control parametex (see the Appendix for the numerical two oscillators are incommensurate. The two oscillators drift
methods that were usgdrhe bifurcation diagram consists of out of phase in each revolution. However, the spikesgn
two separate parts. They correspond to two coexisting attracause phase shifts irz{,z,) that resynchronize the two os-
tors, and have been obtained using different initial condi<illators. This leads to a 1:2 mode locking. For highsi.e.,
tions. abovea=0.09, oscillator @;,z,) can no longer force the

0.1

FIG. 4. Lyapunov spectrum fol=5 under
variation ofa. The diagram shows the Lyapunov
exponents\ on attractor 1, except for the grey-
shaded area, where attractor 1 does not €pist
rameterse=0.1,b=4, andd=2).

0.0
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X, (b)

0.3

X
(a) o ®
0.3
0.2
0.1
00 2
0.0 00 0.06  Z4 92
z, 00 04 7

(b)

X5

0.3
0.2
0.1

0.0

FIG. 5. Period-1 orbit foN=5 on attractor 1;
1:2 mode locking; projections ont@) oscillator
(z1,2,) andxs, and(b) oscillator (z3,z4) andxs
(parametersa=0.04,£=0.1,b=4, andd=2).

FIG. 6. Chaotic orbit foN=5 on attractor 1.
Projections onto(a) oscillator (z;,2z,) and Xz,
and (b) oscillator (z3,z,) and x5 (parametersa
=0.085,6=0.1,b=4, andd=2).

FIG. 7. Period-1 orbit foN=5 on attractor 2;
2:1 mode locking. Projections onta) oscillator
(z1,2,) andxs, and(b) oscillator (z3,z,) andxs
(parametersa=0.04,¢=0.1,b=4, andd=2).

FIG. 8. Chaotic orbit foN=5 on attractor 2;
projections onto(a) oscillator (z;,z,) and Xs,
and (b) oscillator (z3,z,) and x5 (parametersa
=0.1,=0.1,b=4, andd=2).
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X5

FIG. 9. The transient onto the period-1 orbit
of attractor 2 under the action of the time-delay
control: (a) projection onto oscillator4; ,z,) and
X5, (b) projection onto oscillator4;,z,) andxs,
and (c) time development of the amplitud® of
the control signal|x(t)—x(t—7)| (parameters:
N=5,a=0.12,=0.1,b=4, andd=2; param-

5 eters of the controlz=3.8557, control gaink
=0.05, control limit=0.25.
-3
Aol T
10°F .
10'9 L L L L 1 " 1 i L 1 L n 2 L
0 500 ¢ 1000 1500

phase locking and the periodic orbit breaks up into a quasitz;,z,). In the GRS, the symmetry is broken by the differ-
periodic one. As one increasesfurther, attractor 1 shows ence in the frequencies, autocatalytic constants, and coupling
several periodic windows and, finally, low-dimensional constants. However, as has been shown above, these two
chaos arises. In Fig. 6, the phase space projections of thigttractors still exist. Moreover, their shape and location in
low-dimensional chaotic form of attractor 1 are depicted. Osphase space does, indeed, reflect the structural symmetry.
cillator (z3,z,) has still a much smaller amplitude than os- Attractor 1 lies close to the subspace definedzlpy 0 and
cillator (z;,2,) (though its influence on the nonlinear trigger z,=0. Attractor 2 is situated close to the subspace defined by
Xs is no longer negligible Remarkably, the dynamics in the z,=0 andz,=0. On attractor 1, oscillatorz(,z,) is domi-
three-dimensional projection onta,(,z,) together withxs  nant and, on the periodic orbits, the phase locking is kept up
shows a close resemblance to thesBler system. It therefore by phase shifts of oscillatorz§,z,). On attractor 2, accord-
can be considered as a “perturbed” $&ter system. ingly, oscillator 3,z,) is dominant and, on the periodic
The evolution of attractor 2 under variation afis com-  orbits, the phase locking is kept up by phase shifts of oscil-
pletely analogous, except that now oscillatag,¢,) plays lator (z;,2,).
the dominant role andz(,z,) is very small. In Fig. 7, the Up to a=0.09, the two attractors develop independently.
period-1 limit cycle of attractor 2 is depicted. It correspondsThey are located clearly separate in phase space. Then a
to the periodic orbit of attractor 1 shown in Fig. 5. Here boundary crisis occurs: Attractor 1 collides with the separa-
oscillator (z3,z,) is dominant, whereas oscillator(,z,) has  trix to the basin of attractor 2 and ceases to exist as a stable
a negligible amplitude. The phase locking between the oscildynamical state. It still attracts the trajectories out of its ba-
lators is accomplished by phase shifts in oscillater, £,) sin, but eventually every trajectory ends up in attractor 2. At
due to the spikes irxs which are in turn triggered by a=0.115, another crisis can be observed. In the bifurcation
(z3,24). Again, the dynamics in the projection, here ontodiagram(Fig. 3), the dynamics on the resulting attractor re-
(z3,2z,4) together withzs, resembles that of the Reler sys- sembles that of attractor 1. However, it is not at all obvious
tem, which can best be seen on the low-dimensional chaotiwhether it is, indeed, attractor 1 or, maybe, the two attractors
orbit in Fig. 8 (compare the chaotic orbit on attractor 1 in merged. In order to answer this question, we select an initial
Fig. 6). condition on the period-1 orbit of “attractor 2" and observe
The existence of the two attractors is a consequence of theow the GRS develops from there. For this purpose, we uti-
structural symmetry: in a perfectly symmetric syst@hthe lize the time-delayed feedback control method introduced by
same structure as the GRS in the mode pigfwach attrac- Pyragaqd9] (see the Appendix for the utilized numerical al-
tor, that is not in itself symmetric with respect to the ex- gorithm). With the aid of the control, we force the GRS onto
change of any two oscillatorgi.e., the transformation the period-1 orbit of “attractor 2"(Fig. 7) at a=0.12 (see
2,23, 224 in the casdN=5), must necessarily have one Fig. 9). It should be remarked here that, in a strict sense, one
or more mirror images, such that their union fulfills the sym-can no longer talk of the “attractor” after it has undergone a
metry. An attractor, where oscillator{,z,) dominates os- boundary crisis. However, as it still attracts the trajectories of
cillator (z3,2z4), is obviously not symmetric with respect to its basin and the transient motion along them may be very
the above transformation. Therefore, in the perfectly symiong, we will, nevertheless, still call it an attractor. The fact
metric system, there would have to be another coexistinghat this is possibléwith vanishing control signaldemon-
attractor, where oscillator z§,z,) dominates oscillator strates, that at least the period-1 limit cycle of attractor 2
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2 shows the Lyapunov exponents of attractor 1 except for the
intervalae[0.9,0.113, where attractor 1 does not exist. The
sequence of periodicity, quasiperiodicity with periodic win-
[Ny 1 dows, and chaos can clearly be seen. &»10.115, the GRS
is hyperchaoti¢6]. In Fig. 11, the phase-space projections of
the hyperchaotic attractor at=0.3 are shown. Interestingly,
0 ! ' ! the second Lyapunov exponent becomes positive in the vi-
' ' cinity of the second and third crises. From that point, the
r three largest Lyapunov exponents grow more or less linearly
with a (except for a small periodic window at=0.23. The
GRS in this range o& can no longer be regarded as a per-
turbed Rasler system in any projection. Oscillatar; (z,)
. . . ! gradually ceases to be dominant, and the dynamics of the
0 5000 10000 15000 GRS seems more and more irregular.a&t0.17, the third
t Lyapunov exponent becomes positive. The Lyapunov dimen-

) _ sion of the attractor is larger than 4. However, no qualitative

FIG. 10. Time development of the mean amplitudes  change of the dynamics could be observed at this point, ei-

=\Z11+7; andr,=yz3+7, of the two oscillators in the mode pic-  ther in the bifurcation diagrams or in the phase-space projec-
ture after the time-delay control has been switched off. The trajectjgns.

tory remains in the basin of attraction of attractor 1 ut#9500.
At this point, it quickly moves into the basin of attraction of attrac-
tor 2, and never returns to attractor 1 afterwa(darametersN
=5,a=0.12,6=0.1,b=4, andd=2). We now proceed to show that the GRS does behave in a
similar manner in the cas®=7. In the mode picture, the
does still exist. Subsequently, we switched off the controlseven-dimensional GRS consists of three oscillators coupled
First, the trajectory left the unstable periodic orbit accordingvia the nonlinear triggexy .
to the largest Lyapunov exponent of that orbit. Then, it re- If one compares the bifurcation diagrdffig. 12 and the
mained on attractor 2 for approximately 1000 revolutions.corresponding Lyapunov spectru(fig. 13 with those of
But, eventually, the trajectory changes very quickly to anN=5 (Figs. 3 and 4, respectivelyone perceives a striking
attractor-1-type shape and, within the patience of the author&semblance. There are three coexisting attractors for lower
(for a relatively long time interval ofAt=300 000, i.e., @ (a[0,0.08), corresponding to the three oscillators of the
about 30 000 revolutionsit never again showed attractor-2- seven-dimensional GRS. Two of these attractors vanish via
type behavior(Fig. 10. From this, we conclude that the at- boundary crises in an intermediate regime of interacting at-
tractor ata=0.12 is, indeed, attractor 1, and attractor 2 hagdractors @<[0.06,0.118). Finally, only one attractor re-
lost its stability. In order to arrive at this situation, two things mains, which is hyperchaotic with an increasing number of
must have happened: attractor 2 must have undergone Rositive Lyapunov exponents.
boundary crisis into the basin of attractor 1 and attractor 1 Forae[0,0.03, each of the three attractors can be char-
must have separated from the separatrix in an inverse bounécterized by the dominance of one of the three oscillators.
ary crisis. It seems virtually impossible that these two inci-Each attractor develops as a result of the instability of the
dents occur at the same valueaf Thus, depending on the fixed point ), x{M) corresponding to the respective domi-
order in which they occur, there should be a small interval ofnant oscillator. This oscillator triggers;, while the other
either coexisting or merged attractors in between. There itwo oscillators have a small amplitude. @ttractor 1, os-
some numerical evidence that, indeed, the second situation @llator (z;,z,) is dominant; onattractor 2 it is oscillator
valid. (z3,2,4); and, onattractor 3 oscillator @5,z¢). As long as
The development of the two attractors as a functiom of the attractors are periodi@.g., forae[0.006,0.04 on at-
can also be observed in the Lyapunov exponents. Figure #actor 1 the mode locking is kept up by phase shifts in the

B. Numerical study of the caseN=7

(a) x; Xy
30
20 FIG. 11. Hyperchaotic orbit fo=5; projec-
tions onto(a) oscillator (z;,z,) andxs, and(b)
10 oscillator (z3,z,) and x5 (parametersa=0.3, ¢

=0.1,b=4, andd=2).
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5
0.05 7
4r Attractor 2
3l Attractor 3 0.00
2 A
1| Attractor 1 -0.05 - ]
X
6
Or -0.10F .
-1F 1
2k S . 0.0 0.1 a 0.2 0.3
<,/crises/
3 - FIG. 13. Lyapunov spectrum fod=7: depicted is the develop-

0 0.05 0.1 0.15 02 ment on attractor 1 up t@=0.06, that on attractor 2 frona
=0.06 to 0.11(grey-shaded and that abovea=0.11 on the re-

. . . maining large attractor.
FIG. 12. Bifurcation diagram foN=7: attractors 1, 2, and 3

from bottom to top in different shadings. The valuesxgfat the  cillators remain small. That means the three attractors are
maxima ofxg are shown(parameterse=0.1,b=4, andd=2). located in phase space close to the subspace of the respective
dominant oscillator together with the nonlinear trigger.
two oscillators with the small amplitude as in the caée Thus they are clearly separate from each other. With increas-
=5. Most remarkably, on all three attractors, the dynamics isng a, the attractors grow and begin to interact. First, attrac-
qualitatively equal to that of the Reler system in the pro- tor 3 vanishes aa=0.052 in a boundary crisis, where it
jection onto the respective dominant oscillator together withcollides with the separatrix to the basin of attractor 1. Attrac-
the nonlinear variabl&,, i.e., in a three-dimensional projec- tor 1 also loses stability &=0.06, such that only attractor 2
tion of the seven-dimensional phase spacempare Figs. remains stable. Finally, aa=0.11, a third crisis occurs,
14(a) and 14b) for the period-1 orbit on attractor 2, and which leaves a large attractor that encompasses the dynamics
Figs. 14c) and 14d) for a chaotic orbit on attractor]2 of all three attractors. In general, the motion from one attrac-
Again, the existence,form, and location in phase space of th®r to the other is much slower than the motion on the attrac-
three attractors can be interpreted as a manifestation of tHers (compare Fig. 10
structural symmetry. They appear as mirror images of each In Fig. 13, the Lyapunov exponents as a functioraafre
other under the symmetry operation of an exchange of thehown. Fora<0.06, the GRS is on attractor 1. In thegrey-
dominant oscillator with one of the other oscillators. For ex-shaded regioma[0.06,0.11%, the GRS revolves on attrac-
ample, attractor 1 would be obtained from attractor 2 by theor 2. Fora>0.115, the Lyapunov exponents of the remain-
transformatiorg, < z3, 2, 24. ing hyperchaotic attractor can be seen. Here, the Lyapunov
For small values o#, the dominant oscillator of each of exponents grow approximately linear wigh similar to the
the attractors has a large amplitude, while the other two oscaseN=5.

a
(a) X,
0.2
0.0 _— .
004 3 0 o 0.02 FIG. 14. (8—(c) Periodic orbit forN=7 and
05466 0.00 a=0.035 on attractor 2 with 1:1:1 mode locking:
22'0'05 0.02 Zy z Z6-0.02" T3, 020 00 - 0’ projections ontda) oscillator (,,2,) andx;, (b)

Zg oscillator (z3,z,) and x;, and (c) oscillator
(z5,26) and x;. (d)—(f) Chaotic orbit forN=7
anda=0.095 on attractor 2; projections on(d)
oscillator (z;,z,) and x;, (e) oscillator (z3,z4)
and x;, and (f) oscillator (z5,z¢) and x; (other
parameterse =0.1,b=4, andd=2).
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FIG. 15. Time development of the GRS for
N=61. The amplitudes of the variablgg, , are
shown in grey scale as a function of time f@y
a=0.03,(b) a=0.07, and(c) a=0.15 (other pa-
rameterse=0.1,b=4, andd=2).

index

0 50 100 150 200
time
C. Dynamics for arbitrary odd dimension N 0.000 21, 0.000 17, 0.000 14,0.000 10, 0.000 09, 0.000 08,

We have demonstrated how the dynamics of the GRS i9-000 08, 0.000 02'_ 0.000 015 0.000 0_1’ _0-_000_03’ z_;md
the casedN=5 and 7 can be understood within the same— 0-000 05. Fror_n this, the Lyapunov dimension is e§t|mated
scheme of coexisting attractors. We expect that the dynamid® PeD = 20.8 with the help of the Kaplan-Yorke conjecture
of the GRS behaves in an analogous way for every odd dit10]- In this state, the GRS does not explore all of its phase
mensionN. Thus, we expect, in generalN{1)/2 coexist- Space and several other coexisting chaotic attractors can be
ing attractors for small values af On each of the attractors, found, which are not shown here. Figure(dShows a snap-
one of the oscillators of the mode picture will be dominant.shot fora=0.15, which lies in the hyperchaotic regime. Here
Each attractor will be located close to the hyperplane of théo coherent structure can be perceived. This state has 38
respective dominant oscillator together with the nonlineampositive Lyapunov exponents, and a Lyapunov dimension of
trigger. The other oscillators will have a negligible ampli- D=60. In this state, the hyperchaotic attractor extends to all
tude. In the projection onto the dominant oscillator togetheiof the phase space and no coexisting attractor can be found.
with the nonlinear triggeky , the dynamics will be Rssler- For large values oN, the GRS is similar to a time delay
like. For higher values a4, the attractors will grow in phase system of the formy(t)="f(y(t—7))+g(y(t)), as investi-
space and interact with each other in several crises. Eventyated, e.g., in Ref§11—17. This can clearly be seen in Fig.
ally, one hyperchaotic attractor will remain, which extends1s. The linear subsystemacts as a delay line, that merely
over all of the phase space that was occupied by e ( transports signals back and forth between the positive feed-

—1)/2 coexisting attractors. _ back process, represented ky, and the nonlinear trigger
~ For clarity, we briefly discuss the dynamics of the GRSy . The delay time of the GRS is approximat®ly(see Sec.
inphase space for a higher number of variabls;61. To || A). The difference between the GRS and a time delay

this end, we use a pseudo-space-time representation of tRgstem is that the GRS—as a spatially discrete system—has
dynamics in Fig. 15 for three different values af The g nonlinear dispersion relatian(k). As every mode of the
values of every second variabtg,1,n=0, ...,30, are de- GRS is active for values af in the hyperchaotic regime, the
picted in grey scale as a function of time. In order to ensurgjispersion relation cannot be neglected in that case. Thus the
that the dynamiCS has settled on the attractor, the GRS Wqﬁnctionf W0u|d have to be rep'aced by a functiona'y'(‘t
propagated for a transient time 500 000, which corresponds. At), with At>N. Still, the GRS has got the same basic
to about 10 000 revolutions of the slowest oscillator for  strycture as a time delay system. We arrive at identical scal-
= 61. A periodic orbit fora=0.04 is visualized in Fig. 1&).  ing properties of the Lyapunov exponents, the Lyapunov di-

In the mode picture, the mean amplitudes of the five domimension, and the metric entropy fiir—, as will be shown
nant oscillators are 1.30, 1.16, 1.12, 0.40, 0.11, 0.05, ang, sec.V.

0.04. The amplitudes of the other oscillators are smaller than
0.01. Obviously, the dynamics is not dominated by a single |, prRoPERTIES OF THE GENERALIZED RO SSLER

oscillator, suggesting that the coexisting periodic orbits have  gysTEM UNDER VARIATION OF SYSTEM SIZE N
undergone oneor more merging crises before losing their sta-

bility. In Fig. 15(b), a comparatively low-dimensional cha- Up to now, we have investigated the dynamics of the
otic orbit close to the above periodic ofiEig. 15b)] is GRS in phase space under variation of the control parameter
shown. It has been calculated far=0.07. The trace of the a for thecasefN=5 and 7. In the present section, we inves-
periodic orbit can still be seen in the image. Additionally, atigate the GRS as a function &F for four fixed values of:
considerable activity of high-frequency modes can be pera=0.3, 0.25, 0.15, and 0.07. The first three valuea afe in
ceived as well. The largest Lyapunov exponents arghe regime of large, phase-space-filling hyperchaotic attrac-
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odd dimension\, as long as the GRS is in the hyperchaotic
regime (large enougha). The metric entropy approaches a
limit value H., for largeN. Therefore, the Lyapunov expo-
nents decrease proportional tdN1/Note that this observa-
tion is not so clear cut foa=0.07, probably due to the fact
that the chosen initial condition lies within the basin of at-
traction of different attractors for different values of.
Therefore, we find that the liméé— o of the GRS is similar

to the limes of an increasing delay time of time-delay sys-

60 ' ' ' ' T - tems and is not similar to the thermodynamic limes of ho-
a=0.15,0.25,03 -~ mogeneous, spatially extended systems. Recently, the con-
40 - 5 stancy of the metric entropy of time-delay systems for
Dx < increasing delay time has been attributed to the constancy of
20+ o a=0.07 /| the number of localized nonlineariti¢47]. The same idea
applies to the GRS. In Sec. Il, we distinguished between a
® 0 g f ! ! L L linear, (N—1) dimensional subsystenx{,... Xy-1)) and a

one-dimensional nonlinear subsystdthe trigger variable

— T T T T T Xyn). The linear subsystenx§,... X- without the posi-
0.2 _a;(v)'V3VV\7v—--~ A 1 ) y $ (=) ( P

a=0.25 tive feedback process presentdp) allows only for a linear,
V’AAAAAAAAAAAAAA ---------- Breraneaes Breeemeees T bidirectional transport of signals and is, therefore, not able to
H 0.1 | a=0.15 i initiate any unstable behavi¢see Fig. 15 In the case of the
. 00 00 O0mmme_ S N GRS, it is the one-dimensional localized nonlineaxiy[17]
00,0097 0770 (together withx,), which allows for a nonlinear stretching
Da=0-ggm o o 4 and folding in phase space and is solely responsible for the
0.0 %”?8”_”5'3 30 4'0 50 60 positive metric entropy. As in the case of time-delay sys-
tems, we expect the value of the metric entrdpyfor in-
(c) N creasingN to depend only on the number of localized non-

linearities, which is equal to one for the GRS, and the rate
with which the information is processed, which is estimated
via the correlation timer,. Therefore, we hypothesize that
the metric entropy scales like

FIG. 16. (@) Number of positive Lyapunov exponent))
Lyapunov dimension, anft) metric entropy as a function & for
a=0.3, 0.25, 0.15, and 0.0(dther parameters:=0.1,b=4, and

d=2).
tors, and the fourth value od lies in the regime oflow- Hoci 10
dimensional, coexisting attractofd. is varied from 3 to 61. T (10)

Here, we mainly focus on the numerical calculation of

Lyapunov exponents, from which the Lyapunov dimension

D, and the metric entropy are estimated. The Lyapunov for N—. Since in the hyperchaotic case the correlation

exponents have been calculated with the fixed initial conditime is expected to be independentisee Sec. lIl A, Eq.

tion (x,xy)=(1,0, ... 0,0). The other parameters are again(10) reproduces the limit behavior of the metric entropy of

chosen to be =0.1,b=4, andd=2. Interpreting the dimen- the GRS. In the case of homogeneous, spatially extended

sionality N of the GRS as system size, we compare the resystems, we expect the number of localized nonlinearities to

sults to the thermodynamic limes of homogeneous, spatialljhcrease proportionally with the system size. This leads to a

extended systems, where the number of positive Lyapunogroportional increase of the metric entropy with the system

exponents, the Lyapunov dimension, and the metric entropgize, as has been observed in several models.

are reported to be proportional ®[18—22. In this case, the Thus we conjecture that the high-dimensional chaotic mo-

distribution of Lyapunov exponents has been reported to aption observed in the GRS is fundamentally different com-

proach a limit functiorf, i.e.,\;=1(i/V), if V is the system pared to the spatiotemporal chaos observed in homogeneous,

size [23]. In the next step, we draw the attention to thespatially extended systems. Here the difference is expressed

GRS'’s similarity to time-delay systems, where the Lyapunowvin terms of the number of localized nonlinearities a system

dimension has been reported to be proportional to the delagossesses in phase space. In the case of the GRS, the number

time, while the metric entropy approaches a limit value forof the localized nonlinearities is independent of the control

increasing delay timg11]. parameters including the system size. In the case of homo-
Figure 16 shows the number of positive Lyapunov expo-geneous and nonlinear spatially extended systems, the num-

nentsN™, the Lyapunov dimensio®, (estimated via the ber of localized nonlinearities is expected to grow propor-

Kaplan-Yorke relatiorj10]) and the metric entropii (esti-  tional to the system size.

mated via the Pesin formu[24]) as a function oN for the In Table I, we show the limit valuél,, for different val-

four values ofa. The number of positive Lyapunov expo- ues ofa. Additionally, the value ofH,, normalized to the

nentsN* and the Lyapunov dimensioB, grow linearly  autocatalytic coefficiend is shown. Note that the value af

with N. Remarkably, the Lyapunov dimensi@n, is maxi- is an upper bound for the sum of the positive Lyapunov

mal up to its fractional parti.e., D,>N—1) for almost all exponents and, with this, to the estimated metric entidpy
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TABLE |. Limit value of the metric entropyH for different

values ofa.
H. H.,
a a
0.3 0.2 0.7
0.25 0.16 0.6
0.15 0.08 0.5
0.07 0.02 0.3
0.03 0.0 0.0
-1 T T T T =
The casea=H.. corresponds to an unbounded, linedx, ( 0.0 0.2 0.4 0.6 0.8 1.0
—1) dimensional systemx(,X,,...,Xy—1) in the absence of rescaled index i/N

the localized nonlinearitxy, .

From Table I, we infer that the limit value of the metric ~ FIG. 17. Distribution of rescaled Lyapunov exponents
entropy,H.,, comes closer to its upper boumdfor an in-  =(N*/Z* )\ for different N (N=15, 21, 41, and 61 The
creasing value o, indicating that the hyperchaotic attrac- Lyapunov exponents are sorted in descending offerameters:
tors increasingly exploit all the unstable directions available2=0-3,6=0.1,b=4, andd=2).

In the following, we examine the distribution of Lyapunov

exponents as a function dfi. If one is to compare the sizeN for the rescaled Lyapunov exponerifsl) is consid-
Lyapunov exponents of different systems, one faces therably different from the thermodynamic limes of spatially
problem that the absolute values of them depend on the chextended systems. In the latter case, the correlation time is
sen time scale. In systems with many different characteristigpproximately independent of the system size, while in the
times, like the GRS, it is not obvious which time scale to usecase of the GRS the correlation time decreases proportional
Above, the time scale for the GRS under variatiorNohas  to the system sizé.

been chosen such that the highest frequency of the linear In delayed dynamical systems with an expansive local
subsystemu ., is approximately equal to 2[&ee Eq.(5)].  dynamics(local in time, there has been reported the exis-
In this case, we expect the correlation timeto be approxi- tence of “anomalous” Lyapunov exponenf5,15 which
mately constant for different values B, while the timersa  do not scale like M for N— o, but remain at a finite value.
signal needs to traverse the linear subsystem. (. Xn-1)) Considering the similarity of the GRS with a delayed system
increases proportionally tdl. In the analysis to follow, we and the expansive term presentp=ax;—X,, one may
choose the time scale such that the rescaled mean positiegpect to observe such an anomalous Lyapunov exponent for
Lyapunov exponent is equal to 1. The rescaled Lyapunowa>0. However, due to the fact that the linear subsystem

exponents\ are defined as transports energ(in the form of squared amplitudeaway
from x,, the local dynamics of the beginning of the linear
B N* subsystem is that of a damped oscillator for all values of
)‘S_ET A, 1D considered in this paper. For values afsufficiently large

such that the local dynamics does indeed become expansive,

where 3\ denotes the sum over the positive Lyapunovthe GRS is globally unstable, as the nonlinear trigger is no
exponents, i.e., the metric entropy, add denotes the num- longer able to keep the amplitudes of the linear subsystem
ber of positive Lyapunov exponents. Using the time scaldounded. Accordingly, no sign of an anomalous Lyapunov
according to Eq(11), the maximal frequency of the GRS exponent(i.e., a Lyapunov exponent that does not scale like
scales likewmay=2(N*/H). AssumingN*~N andH—H., 1/N) could be seen in any of the spectra calculated for the
for high enougha, we find w,*N/H... From this the cor- present work.
relation time is estimated to decrease within the hyper- Finally, we would like to discuss the shape of the limit
chaotic case liker,xH../N. The same argument applies to distributionf of the rescaled Lyapunov exponents. We have
the scaling of the velocity of signals yielding<N/H... This ~ observed above that the limit value of the metric entropy,
leads us to observe that the rescaling of the time according td~ . approaches its upper bouador an increasing value of
Eq. (11) makes the timer¢=N/v a signal needs to traverse & as a direct consequence of the dynamics increasingly ex-
the linear subsystem independent of the system NiZer  ploiting all unstable directions of the unstable fixed point
sufficiently large values oé. (X(l),XF\ll)). We find that the same idea applies to the

In Fig. 17, the distribution of the rescaled Lyapunov ex-Lyapunov spectra: For an increasingly hyperchaotic attractor
ponents is shown for different values Nffor a=0.25. The (increasing value o&), the Lyapunov spectra gain similarity
Lyapunov exponents are sorted in descending order. The digvith the real parts of the eigenvalues of the unstable fixed
tributions converge to a limit distributiom, ;= f(i/N), with point (x(l),x(Nl)). In Fig. 18, we show the Lyapunov spectra
increasingN. We observe qualitatively the same behaviorfor three different values of (fixed dimensionN=61) to-
for all values ofa. Note that, although the existence of a gether with the real parts of the eigenvalues of the fixed point
limit distribution f has also been shown for homogeneousaccording to Eq(5). In all cases, the time scale has been
spatially extended systems, the limes of an increasing systeohosen such that the trace of the matiequals 1.
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T T T T this difference in terms of the number of localized nonlin-

o/a ] earities.
0.03 . . .
—o— )/a (a=0.07) In Sec. |, we raised the question of how dynamical sys-
o— Wa (a=0.15) tems develop from low-dimensional chaotic behavior to hy-

perchaotic states. In the GRS, one observes one specific path
through the chaotic hierarchy, starting from a stable fixed
point over chaos up to hyperchaos. The GRS exhibits a sce-
nario of coexisting Rssler-like attractors that interact and
eventually merge to form a hyperchaotic attractor. We would
like to emphasize that the GRS only realizes one possible
way, ending up with one special form of hyperchaos. We
0.00 5 feel that there are many different forms of hyperchaos which
0.0 0.2 0.4 0.6 0.8 1.0 possibly cannot be sufficiently characterized with the help of
rescaled index i/N Lyapunov exponents. In the case of the GRS, the structure of
the system has provided a helpful scheme to interpret the
_ FIG. 18. Comparison of the real parts of the eigenvalues_ of thQJynamiCS. We believe that the investigation of the topologi-
linear subsysterm; and the Lyapunov exponents of the GRS in the g structure of the flow and, specifically, the attractor struc-

8?/?32‘;5; Ir?éizs%«(a)z{i\?éljéﬁgg 2%2;' 'c;'rzr:r’ g”g:t'”fosmh;;’rzg‘ée”ture and the interaction of attractors, could be used to clas-
sify high-dimensional chaotic dynamics in general.
values for differena. (other parametergs=0.1,b=4, andd=2). fy hig y 9

0.02 —2—)/a (a=0.25) -

Ma

0.01
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linear subsystem with a variable number of degrees of freeg
dom together with one nonlinear trigger. The linear sub-
system can be solved analytically. Utilizing the eigenmodes APPENDIX: NUMERICAL ALGORITHMS APPLIED

of the linear subsystem, one can transform the GRS into a

mode picture, pon3|st|ng 9f harrr_10n|c oscillators th"’,‘t A% utta triple[26]. This algorithm takes advantage of a sixth-
coupled only via the nonlinear trigger. The mode picture,yer formula to propagate a system of ordinary differential
reveals a structural symmetry of the GRS. With the aid ofgquations. A fifth-order formula is used to estimate the inte-
this structural symmetry, we interpret the dynamics of thegration error and, additionally, for each Runge-Kutta step
casesN=5 and 7 within a general ;cheme of coexistingt .t .., the algorithm calculates a polynomial that ap-
attractor; For §ma}ll va]ues af there Is, for gach attractor, proximates the solution on the whole intery],t,,. ;] up to
a specific projection into a three-dimensional subspacean error of fifth order. The tolerance was set to 10
where the dynamics of the GRS is $&ter-like. The attrac- The Poincaresections were obtained via parabolic inter-
tors expand with increasing and interact in several crises. polation in the vicinity of the intersection points. To calcu-
This parameter regime of interacting attractors eventuallyate the bifurcation diagrams, we utilized a simple algorithm.
leaves one large hyperchaotic attractor with many positivé=or each value of, we started with the state of the system
Lyapunov exponents. Even such kind of hyperchaotic dy{for the last value of, let the system adjust to the changed
namics can be made accessible to the human mind, which garameter value for a transient time equivalent to some thou-
used to envisage in three spatial dimensions, with the help afand revolutions, and then recorded the intersection points.
three-dimensional projections onto the oscillators of the Lyapunov exponents were calculated using the algorithm
mode picture. described in Refg[27-29. This algorithm tracks the time

In the second part of this paper, we investigated thedevelopment of an orthonormal basis in the tangent space of
Lyapunov exponents and related chaotic indicators of th@hase space. At regular time intervélsT =50 in our casg
GRS in the limit of large values dfl, mainly in the hyper- the vectors are reorthonormalized. The mean logarithmic
chaotic regime. The number of positive Lyapunov exponentgrowth rates of the moduli of the vectors are the Lyapunov
and the Lyapunov dimension grow linearly with. The  exponents.
Lyapunov dimension is maximaD, ~N, independently of The delay equation of the time-delayed control was inte-
a, as long as one is in the hyperchaotic regime. The metrigrated by the same Runge-Kutta triple, using the spline
entropy converges to a limit value for increasiNg If the  polynoms that the Runge-Kutta triple outputs to record the
time is rescaled in such a way that the signal traveling timecontinuous history of X,xy). The control acts on all vari-
through the linear subsystem remains constant with increasbles of the system. We chose a gain factor of 0.05 and
ing N, the distribution of the Lyapunov exponents ap-limited the control signal to 25% of the modulus correspond-
proaches a limit function and the metric entropy grows lin-ing time derivative of the uncontrolled GRS. For the delay
early with N for N—. We argued that the hyperchaotic time 7, we chose the eigenfrequency of the oscillator to be
dynamics observed in the GRS is fundamentally differenistabilized and, subsequently, adjustedto minimize the
from spatiotemporal chaos. In this paper, we have expressedean control signal.

The differential equations were integrated using a Runge-
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