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Hyperchaos in the generalized Ro¨ssler system
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Introduced as a model for hyperchaos, the generalized Ro¨ssler system of dimensionN is obtained by linearly
coupling N23 additional degrees of freedom to the original Ro¨ssler equation. Under variation of a single
control parameter, it is able to exhibit the chaotic hierarchy ranging from fixed points via limit cycles and tori
to chaotic and, finally, hyperchaotic attractors. Through the help of a mode transformation, we reveal a
structural symmetry of the generalized Ro¨ssler system. The latter will allow us to interpret the number, shape,
and location in phase space of the observed coexisting attractors within a common scheme for arbitrary odd
dimensionN. The appearance of hyperchaos is explained in terms of interacting coexisting attractors. In a
second part, we investigate the Lyapunov spectra and related properties of the generalized Ro¨ssler system as a
function of the dimensionN. We find scaling properties which are not similar to those found in homogeneous,
spatially extended systems, indicating that the high-dimensional chaotic dynamics of the generalized Ro¨ssler
system fundamentally differs from spatiotemporal chaos. If the time scale is chosen properly, though, a
universal scaling function of the Lyapunov exponents is found, which is related to the real part of the eigen-
values of an unstable fixed point.@S1063-651X~97!13410-9#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Chaotic dynamics has been intensively investigated w
the help of simple low-dimensional models such as the
renz @1# or the Rössler system@2#. Because of the restricte
phase space, only low-dimensional chaotic motion is
served in these systems. Low-dimensional chaos can als
observed in nature@3#, although the underlying dynamica
systems have an infinite number of degrees of freedom.
may wonder: What is the connection of this low-dimensio
chaos to the truly high-dimensional states that may arise
of chaos under variation of one control parameter? How d
the transition from the low-dimensional to the hig
dimensional states take place?

Consider the attractors of dissipative ordinary differen
equations under variation of the dimensionN of phase space
Rössler @4# postulated a chaotic hierarchy where more a
more qualitatively new forms of complex motion develo
with increasing dimension: In one dimension, only sta
fixed points are encountered. In two dimensions, perio
orbits can also exist. In three dimensions, the possibility
quasiperiodicity and chaos arises. Thus, at the lower en
the hierarchy, the well-known low-dimensional dynamic
states of motion can be found. Somewhere high up in
hierarchy, things like turbulence and noise may be loca
One crucial question is how one can distinguish and cha
terize the higher steps of the hierarchy. A provisional clas
fication can be made in terms of Lyapunov exponents@5#.
For dynamical states with more than one positive Lyapun
exponent, the term hyperchaos has been coined@6#. In order
to study the full chaotic hierarchy, Baier and Sahle@7# intro-
duced a class of model equations, the generalized Ro¨ssler
system~GRS!. Starting from the Ro¨ssler system as one of th
simplest and best understood nonlinear ordinary differen
equations that exhibit chaos, the GRS is obtained by line
561063-651X/97/56~5!/5069~14!/$10.00
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coupling additional degrees of freedom to the origin
Rössler system. The structure of the GRS of dimensionN is
that of anN21 dimensional linear subsystem that is coupl
to one nonlinear variable. As will be shown, the GRS p
serves essential characteristics of the Ro¨ssler system while
extending it to a phase space of arbitrary dimensionN. This
allows one to study the influence of the discrete param
N, without having to compare completely different system

Baier and Sahle@7# demonstrated that the GRS does, i
deed, show hyperchaotic dynamics with an increasing nu
ber of positive Lyapunov exponents for increasingN. The
GRS realizes one possible path through the complete cha
hierarchy from a stable fixed point via periodic orbits a
chaos up to hyperchaos. We@8# introduced a mode transfor
mation of the GRS based on the numerical solution of
linear subsystem. In the present paper, we will restate
mode transformation based on a semianalytical solution
the linear subsystem. The mode transformation will then
used to analyze the dynamics of the GRS with arbitrary
mensionN in phase space. In Sec. II, the GRS is introduc
and general properties of the GRS are discussed. In Sec
we deal with the mode transformation and the concept
structural symmetry, that later on will allow us to understa
the number, form, and location of the coexisting attractors
the GRS. Subsequently, we numerically investigate the
namics of the GRS in phase space for the casesN55 and 7
in Sec. IV. We interpret the observed dynamics within
general scheme that enables us to predict the structure o
attractors for higherN. In Sec. V, then, we investigate th
GRS in the hyperchaotic state for different values of t
dimensionN. We report scaling properties of the number
positive Lyapunov exponents, the Lyapunov dimension,
metric entropy, and the Lyapunov spectra as a function ofN.
The limit N→` is discussed in view of the literature on th
subject.
5069 © 1997 The American Physical Society
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II. GENERAL PROPERTIES OF THE GENERALIZED
RÖSSLER SYSTEM

The GRS is given by

d

dt
x~ t !5Ax~ t !2xN~ t !eN21 , ~1!

d

dt
xN~ t !5«1bxN~ t !„xN21~ t !2d…, ~2!

where

A5S a 21 0 ... 0

1 0 21 � A

0 1 � 21 0

A � 1 0 21

0 ... 0 1 0

D , x~ t !5S x1~ t !
A

xN21~ t !
D ,

eN215S 0
A
0
1
D , x~ t !,eN21PRN1`.

It is composed of anN21-dimensional linear subsystemx
and one nonlinear variablexN . Qualitatively, the mechanism
of instability of the GRS is the same as that of the Ro¨ssler
system for all dimensionsN. The positive feedback or auto
catalytic process that is controlled by the parametera causes
an expansive dynamics of the GRS around the origin.
long asxN21 remains well below the thresholdd of xN , xN
adiabatically follows its equilibrium value«/b(d2xN21),
and does not influence the linear subsystemx appreciably.
When xN21 comes close to or exceedsd, xN will start to
grow rapidly, thereby folding the system back to a state
lower amplitude@via eN21 in Eq. ~1!#. This time develop-
ment of xN of long intervals of small amplitude interrupte
by short spikes leads us to callxN the nonlinear trigger.

One of the three parameters«, b, andd can be eliminated
by rescaling the amplitude of (x,xN). In the form the equa-
tions are given in Eqs.~1! and~2!, they are scaled in time in
such a way that the~angular! eigenfrequencies of the linea
subsystem lie in the interval@0,2# for all values ofN ~see
Sec. III!.

The divergence of the GRS isa1b(xN212d), indepen-
dent ofN. Thus the GRS is dissipative, if^xN21&,d2a/b
~the angular brackets denote the time average!. This is true
for all parameter values to be considered in the following

For oddN, the linear subsystemx can be transformed into
(N21)/2 harmonic oscillators that are coupled only via t
nonlinear triggerxN , as will be shown in Sec. III~compare
also Ref.@8#!. For evenN, the linear subsystem can be tran
formed into (N22)/2 oscillators together with one variabl
which simply grows exponentially. That means, there is o
positive real eigenvalue in addition to (N22)/2 pairs of
complex conjugate eigenvalues. This leads to a qualitativ
different dynamics. See the remark at the end of Sec. I
for clarifying this point. In the present paper, we restr
ourselves to the case of oddN.
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III. MODE PICTURE

In Sec. III, we develop the mode picture of the GR
First, we present the solution of the linear subsystem. He
with, we can transform the GRS into a mode picture, wh
the linear subsystemx consists of harmonic oscillators
which are coupled only via the nonlinear trigger variablexN .
In the mode picture, we are in the position to explain the id
of the structural symmetry, which will be of central impo
tance for understanding the dynamics of the GRS in sub
quent sections. Finally, we show the fixed points toget
with their stability properties.

A. Semianalytical solution of the linear subsystem

Consider the linear subsystemx @Eq. ~1!#. Here we restate
the equations in component form as a linear chain w
boundary conditions:

d

dt
xn5xn212xn11 , nP$1, . . . ,N21%,

x05ax1 ,

xN50. ~3!

To solve the linear subsystemx, an exponential ansatz i
used:

x2n115cos@~2n11!k1w#eiV~k!t

for nPH 0, . . . ,
N23

2 J ,

x2n5c sin~2nk1w!eiV~k!t for nPH 0, . . . ,
N21

2 J ,

~4!

wherek is the wave number of the eigenmodes, andV(k)
the corresponding frequency with a specific dispersion re
tion. Substituting ansatz~4! into chain~3! yields

c52 i ,

V6m52 sin~k6m!, mPH 1, . . . ,
N21

2 J ,

k6m56
2m21

2N
p2

1

N
w6m ,

2 i sin~w6m!5a cosS 6
2m21

2N
p1

N21

N
w6mD . ~5!

TheseN21 eigenmodes are a complete solution of theN
21 dimensional linear subsystemx for oddN. The solution
is analytical up to a complex correctionw6m to the allowed
wave numbersk6m , which is determined by a transcende
equation. Fora50, this equation can be solved, giving

w50,
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56 5071HYPERCHAOS IN THE GENERALIZED RO¨ SSLER SYSTEM
k5
2m21

2N
p, where mPH 1, . . . ,

N21

2 J . ~6!

For a,1, there are (N21)/2 pairs of complex conjugat
eigenvalues (Vm ,V2m), where Vm52V̄2m . The corre-
sponding pairs of eigenmodes represent harmonic oscilla
with angular frequenciesvm5ReVm and autocatalytic coef
ficients am522 ImVm. The complex correctionsf6m to
the values ofkm for aÞ0 can easily be expanded abouta
50. The expansion is up to the order ofa2

f6m5 ia cosS 2m21

2N
p D1

N21

2N
a2sinS 6

2m21

N
p D

1O~a3!. ~7!

In the considered range ofaP@0,0.35#, this is an excel-
lent approximation~however, in the subsequent analysis,
have numerically calculated the eigenvalues and eigen
tors ofA in order to minimize errors!. The imaginary part of
wm determines the autocatalytic coefficientam . It is linear in
a up toO(a3). The real part leads to a correction ofvm . But
for aP@0,0.35#, this correction is very small, i.e., the fre
quencies of the oscillators are almost independent ofa in the
considered range. From Eq.~5!, we infer that the frequencie
of the oscillators are bounded~0,v,2 for all N! and we
expect the autocorrelation timetc in the case of an unstabl
dynamics to be independent ofN. Additionally, the velocity
of signals of frequencyv traversing the linear subsyste
equals 2 cosk. Therefore, the timets a signal takes to
traverse the linear subsystem~from x1 to x(N21) or back,
since the linear subsystem allows for a bidirectional transp
of signals! is expected to be approximatelyN/2.

B. Mode transformation

We have solved the linear subsystemx. The next step is to
transform it into its eigensystemy. The transformed equa
tions for y are completely decoupled~as the matrixA is
transformed into a diagonal matrix!. Thus we can treat the
different oscillators independently. The idea of the followi
steps of the transformation is to bring the oscillators t
correspond to pairs of complex conjugate eigenvalues in
form that is as similar to the oscillator of the original Ro¨ssler
system as possible. The oscillators are of the form

d

dt S y2m21~ t !
y2m~ t ! D5S iVm 0

0 2 iVm
D S y2m21~ t !

y2m~ t ! D .

It can be considered as the principal value decompositio
the following Rössler-like oscillator:

d

dt S z2m21~ t !
z2m~ t ! D5S 2am 2wm

2

1 0
D S z2m21~ t !

z2m~ t ! D .

In the following, these oscillators are calledoscillator
(z2m21 ,z2m). For each variable of the linear subsystemx,
one can choose one complex factor of normalization. It
be utilized to make the entire transformation real~via phase
factors!, and to give the coupling to the nonlineari
xN—which is not touched by the transformation—a certa
rs

c-

rt

t
a

of

n

form ~via amplitude factors!. We choose this coupling in
such a way that the resulting equations are

d

dt
z~ t !5Bz~ t !2xN~ t !c

d

dt
xN~ t !5«1bxN~ t !S (

m51

~1/2!~N21!

z2m2dD , ~8!

where

B5S a1 2v1
2 0 ... 0

1 0 � A

0 � 0

A � a~N21!/2 2v~N21!/2
2

0 ... 0 1 0

D .

For am , it holds that(m51
(1/2)(N21) am5a, as the divergence o

the GRS is not affected by the transformation.c denotes the
vector of coupling constants ofxN to the components ofz. If
the complete transformation is calledU ~i.e., z5U21x!, then
the vector of coupling constantsc is c5U21eN21 . For a
50, we have

c5~1/N!@0,~cosk1!2,0,~cosk2!2, . . . ,0,~cosk~N21!/2!
2# t.

This mode transformationconverts the GRS into a system o
oscillators with frequenciesvm and autocatalytic coefficient
am , that are coupled solely via the nonlinear triggerxN . The
coupling has a special form: the oscillators couple to
trigger only with the sum of their variablesz2m , i.e., they
couple toxN identically. The coupling ofxN back to z is
different for the different oscillators. In the following, w
call the original form of the GRS theBaier-Sahle pictureand
the transformed form themode picture. In Fig. 1, the struc-
tures of the Baier-Sahle picture and the mode picture
compared. Each linear degree of freedom is represented
circle, each nonlinear degree of freedom by a square. C
plings are shown as connecting lines. In the Baier-Sahle
ture, the similarity of the GRS to a spatially extended syst

FIG. 1. Schematical representation of the structure of the G
in ~a! the Baier-Sahle picture, and~b! the mode picture. Each circle
represents one linear degree of freedom, and the square repres
nonlinear degree of freedom.
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is most obvious: the autocatalytic process and the nonlin
triggerxN can be considered as the boundary conditions
homogeneous linear chain. On the other hand, in the m
picture, the dynamics of the GRS can be understood as
interaction of different oscillators, that are coupled only v
one nonlinear trigger. As the triggerxN influences the dy-
namics of the linear subsystem only during the presenc
the spikes, the effect of coupling is restricted to these sh
intervals in time. This allows us to observe the dynamics
the different oscillators independently in the respective p
jections of phase space~see Sec. IV!.

For even values ofN, one finds one positive real eigen
value of the linear subsystem fora.0. In the mode picture
this corresponds to one exponentially growing degree
freedom, which is coupled to the nonlinear triggerxN in the
same way as the even coordinates of the oscillators.
contribution of the nonlinear trigger to the time derivative
this exponential mode is always negative. Thus, if once
exponential mode is pushed to a negative value by the n
linear trigger, it will escape to2`. This mechanism, in gen
eral, leads to a global instability of the GRS for evenN.

C. Structural symmetry

The mode picture reveals the GRS to consist of harmo
oscillators (z2m21 ,z2m), that are identically coupled to th
nonlinear triggerxN ~compare Fig. 1!. A perfectly symmetric
system of the same structure as that in Fig. 1~b!, i.e., one
with identical coefficients for each oscillator, would be sym
metric with respect to any permutation of the oscillators. T
invariant manifolds of such a system, specifically the orb
and attractors, would have to obey this symmetry. For
invariant manifolds, there are two possibilities. Either th
show the full symmetry in themselves, i.e., they are symm
ric with respect to any permutation of the oscillators. Or th
have coexisting mirror images, such that the union of th
obeys the full symmetry. In the GRS, the symmetry is b
ken merely by the difference in the frequenciesvm , auto-
catalytic coefficientsam , and coupling constantscn . Never-
theless, the symmetry is preserved as a qualitative featu
the dynamics, as will be shown later on. We call this pro
erty structural symmetry. For arbitrary oddN, the structural
symmetry will be utilized to understand and predict the nu
ber, shape, and location of the attractors of the GRS in ph
space for moderate values of the autocatalytic coefficiena.
The first manifestation of the structural symmetry can
seen in the stability properties of the fixed points of the GR

D. Fixed points

The fixed points of a dynamical system are the piv
around which the system evolves. Thus it is essential to
vestigate the stability properties of the fixed points, if o
wants to develop any understanding of a dynamical syst
For oddN, the GRS has two fixed points which are the sa
in all odd dimensionsN, in the sense that the common line
coordinates and the nonlinear coordinate are identical for
two GRS’s of differentN. The two fixed points are~for odd
N!
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x1
~1,2!5x3

~1,2!5•••5xN
~1,2!

5
d

2a
7F S d

2aD 2

2
«

abG1/2

,
~9!

x2
~1,2!5x4

~1,2!5•••5xN21
~1,2!

5
d

2
7F S d

2D 2

2
«a

b G1/2

.

Here the minus signs belong to index~1!. The fixed point
(x(1),xN

(1)) lies close to the origin of the system~for «50, it
would be the origin!. Accordingly, the stability analysis o
this fixed point yields, in a good approximation, the eige
modes of the linear subsystem. The additionalNth eigen-
value is strongly attractive. It corresponds to the exponen
decay ofxN to «/(bd2xN21) and its value is approximately
2bd, as is to be expected. On the unstable manifold of t
fixed point, the GRS expands until it is folded back by
trigger event ofxN . The presence of the nonlinear triggerxN
slightly stabilizes the eigenmodes, such that they no lon
become unstable ata50, but approximately ata50.006.
Interestingly, the oscillators that become unstable first are
ones that have a larger autocatalytic coefficientan for higher
values ofa ~see Fig. 2!.

At the fixed point (x(1),xN
(1)), one can already perceive th

fingerprint of the structural symmetry: for each oscillator
the GRS, there is an oscillatory instability of the inner fix
point (x(1),xN

(1)). The symmetry breaking is responsible f
the difference in the eigenvalues of the fixed point. It will b
shown in Sec. IV that each of these instabilities of the fix
point (x(1),xN

(1)) gives rise to a coexisting attractor of th
GRS. The fixed point (x(2),xN

(2)) governs the folding proces
of the GRS. However, none of the attractors ever com
close to this fixed point.

IV. DYNAMICS OF THE GENERALIZED RO ¨ SSLER
SYSTEM IN PHASE SPACE

In the following section, the mode picture and the conc
of structural symmetry will be utilized to develop an unde
standing of the dynamics of the GRS inN-dimensional phase
space. At first, we discuss the caseN55 in some detail. It

FIG. 2. The real parts of the eigenvalues of the central fix
point (x(1),xN

(1)) close to the Hopf bifurcations that give rise to th
coexisting attractors (N57) plotted as a function of parametera.
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FIG. 3. Bifurcation diagram forN55 under
variation of a. Shown is the projection of the
Poincare´ section ontoz2 ~intersection atz150;
the parameters are«50.1, b54, andd52!.
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will be demonstrated that for values ofa,0.09 two attrac-
tors coexist. For higher values ofa, they interact in severa
crises. Finally, the two attractors merge into one hyperc
otic attractor. This scenario of three parameter regimes
coexisting attractors, interacting attractors, and one large
perchaotic attractor will then be shown to hold in the ca
N57 as well. Finally, we postulate that the dynamics of t
GRS in arbitrary odd dimensionN can be explained by ex
trapolating this scheme. For all numerical calculations,
have restricted ourselves to the variation ofN and a. The
other parameters remain constant at the values«50.1, b
54, andd52.

A. Numerical study of the caseN55

In the mode picture, the five-dimensional GRS consists
two oscillators that are coupled via the nonlinear trigg
First, we present a bifurcation diagram~Fig. 3! and the cor-
responding Lyapunov spectrum~Fig. 4! under variation of
the control parametera ~see the Appendix for the numerica
methods that were used!. The bifurcation diagram consists o
two separate parts. They correspond to two coexisting att
tors, and have been obtained using different initial con
tions.
-
of
y-
e

e

f
.

c-
i-

As one increasesa from a50, the fixed point near the
origin becomes unstable at abouta50.0006. One after the
other shortly, the two attractors emerge in two subsequ
Hopf bifurcations as limit cycles. These two periodic orb
constitute the basis for all further development of the attr
tors. Although they become unstable at some point, they
ist up to the highest values ofa. In the following, they will
be referred to as theperiod-1 limit cyclesof the two attrac-
tors. Attractor 1 develops as a result of the instability th
corresponds to oscillator (z1 ,z2) in the mode picture. Ac-
cordingly,attractor 2develops out of (z3 ,z4). In Fig. 5, two
phase-space projections of the period-1 limit cycle of attr
tor 1 are shown: one onto oscillator (z1 ,z2) together with the
nonlinear trigger variablex5 , and the other onto oscillato
(z3 ,z4) together withx5 . The amplitude of oscillator (z3 ,z4)
is negligible compared with that of oscillator (z1 ,z2). Here,
the dynamics of the GRS is completely dominated
(z1 ,z2) together withx5 . In general, the frequencies of th
two oscillators are incommensurate. The two oscillators d
out of phase in each revolution. However, the spikes inx5
cause phase shifts in (z3 ,z4) that resynchronize the two os
cillators. This leads to a 1:2 mode locking. For highera ~i.e.,
abovea50.05!, oscillator (z1 ,z2) can no longer force the
v
-

FIG. 4. Lyapunov spectrum forN55 under
variation ofa. The diagram shows the Lyapuno
exponentsl on attractor 1, except for the grey
shaded area, where attractor 1 does not exist~pa-
rameters:«50.1, b54, andd52!.
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FIG. 5. Period-1 orbit forN55 on attractor 1;
1:2 mode locking; projections onto~a! oscillator
(z1 ,z2) andx5 , and~b! oscillator (z3 ,z4) andx5

~parameters:a50.04,«50.1, b54, andd52!.

FIG. 6. Chaotic orbit forN55 on attractor 1.
Projections onto~a! oscillator (z1 ,z2) and x5 ,
and ~b! oscillator (z3 ,z4) and x5 ~parameters:a
50.085,«50.1, b54, andd52!.

FIG. 7. Period-1 orbit forN55 on attractor 2;
2:1 mode locking. Projections onto~a! oscillator
(z1 ,z2) andx5 , and~b! oscillator (z3 ,z4) andx5

~parameters:a50.04,«50.1, b54, andd52!.

FIG. 8. Chaotic orbit forN55 on attractor 2;
projections onto~a! oscillator (z1 ,z2) and x5 ,
and ~b! oscillator (z3 ,z4) and x5 ~parameters:a
50.1, «50.1, b54, andd52!.
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FIG. 9. The transient onto the period-1 orb
of attractor 2 under the action of the time-dela
control: ~a! projection onto oscillator (z1 ,z2) and
x5 , ~b! projection onto oscillator (z3 ,z4) andx5 ,
and ~c! time development of the amplitudeA of
the control signalux(t)2x(t2t)u ~parameters:
N55, a50.12,«50.1, b54, andd52; param-
eters of the control:t53.8557, control gaink
50.05, control limit50.25!.
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phase locking and the periodic orbit breaks up into a qu
periodic one. As one increasesa further, attractor 1 shows
several periodic windows and, finally, low-dimension
chaos arises. In Fig. 6, the phase space projections of
low-dimensional chaotic form of attractor 1 are depicted. O
cillator (z3 ,z4) has still a much smaller amplitude than o
cillator (z1 ,z2) ~though its influence on the nonlinear trigg
x5 is no longer negligible!. Remarkably, the dynamics in th
three-dimensional projection onto (z1 ,z2) together withx5
shows a close resemblance to the Ro¨ssler system. It therefore
can be considered as a ‘‘perturbed’’ Ro¨ssler system.

The evolution of attractor 2 under variation ofa is com-
pletely analogous, except that now oscillator (z3 ,z4) plays
the dominant role and (z1 ,z2) is very small. In Fig. 7, the
period-1 limit cycle of attractor 2 is depicted. It correspon
to the periodic orbit of attractor 1 shown in Fig. 5. He
oscillator (z3 ,z4) is dominant, whereas oscillator (z1 ,z2) has
a negligible amplitude. The phase locking between the os
lators is accomplished by phase shifts in oscillator (z1 ,z2)
due to the spikes inx5 which are in turn triggered by
(z3 ,z4). Again, the dynamics in the projection, here on
(z3 ,z4) together withz5 , resembles that of the Ro¨ssler sys-
tem, which can best be seen on the low-dimensional cha
orbit in Fig. 8 ~compare the chaotic orbit on attractor 1
Fig. 6!.

The existence of the two attractors is a consequence o
structural symmetry: in a perfectly symmetric system~of the
same structure as the GRS in the mode picture!, each attrac-
tor, that is not in itself symmetric with respect to the e
change of any two oscillators~i.e., the transformation
z1↔z3 , z2↔z4 in the caseN55!, must necessarily have on
or more mirror images, such that their union fulfills the sy
metry. An attractor, where oscillator (z1 ,z2) dominates os-
cillator (z3 ,z4), is obviously not symmetric with respect t
the above transformation. Therefore, in the perfectly sy
metric system, there would have to be another coexis
attractor, where oscillator (z3 ,z4) dominates oscillator
i-
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s
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he
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-
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(z1 ,z2). In the GRS, the symmetry is broken by the diffe
ence in the frequencies, autocatalytic constants, and coup
constants. However, as has been shown above, these
attractors still exist. Moreover, their shape and location
phase space does, indeed, reflect the structural symm
Attractor 1 lies close to the subspace defined byz350 and
z450. Attractor 2 is situated close to the subspace defined
z150 andz250. On attractor 1, oscillator (z1 ,z2) is domi-
nant and, on the periodic orbits, the phase locking is kept
by phase shifts of oscillator (z3 ,z4). On attractor 2, accord
ingly, oscillator (z3 ,z4) is dominant and, on the periodi
orbits, the phase locking is kept up by phase shifts of os
lator (z1 ,z2).

Up to a.0.09, the two attractors develop independent
They are located clearly separate in phase space. Th
boundary crisis occurs: Attractor 1 collides with the sepa
trix to the basin of attractor 2 and ceases to exist as a st
dynamical state. It still attracts the trajectories out of its b
sin, but eventually every trajectory ends up in attractor 2.
a.0.115, another crisis can be observed. In the bifurcat
diagram~Fig. 3!, the dynamics on the resulting attractor r
sembles that of attractor 1. However, it is not at all obvio
whether it is, indeed, attractor 1 or, maybe, the two attrac
merged. In order to answer this question, we select an in
condition on the period-1 orbit of ‘‘attractor 2’’ and observ
how the GRS develops from there. For this purpose, we
lize the time-delayed feedback control method introduced
Pyragas@9# ~see the Appendix for the utilized numerical a
gorithm!. With the aid of the control, we force the GRS on
the period-1 orbit of ‘‘attractor 2’’~Fig. 7! at a50.12 ~see
Fig. 9!. It should be remarked here that, in a strict sense,
can no longer talk of the ‘‘attractor’’ after it has undergone
boundary crisis. However, as it still attracts the trajectories
its basin and the transient motion along them may be v
long, we will, nevertheless, still call it an attractor. The fa
that this is possible~with vanishing control signal! demon-
strates, that at least the period-1 limit cycle of attracto
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does still exist. Subsequently, we switched off the cont
First, the trajectory left the unstable periodic orbit accord
to the largest Lyapunov exponent of that orbit. Then, it
mained on attractor 2 for approximately 1000 revolutio
But, eventually, the trajectory changes very quickly to
attractor-1-type shape and, within the patience of the auth
~for a relatively long time interval ofDt5300 000, i.e.,
about 30 000 revolutions!, it never again showed attractor-2
type behavior~Fig. 10!. From this, we conclude that the a
tractor ata50.12 is, indeed, attractor 1, and attractor 2 h
lost its stability. In order to arrive at this situation, two thin
must have happened: attractor 2 must have undergon
boundary crisis into the basin of attractor 1 and attracto
must have separated from the separatrix in an inverse bo
ary crisis. It seems virtually impossible that these two in
dents occur at the same value ofa. Thus, depending on th
order in which they occur, there should be a small interva
either coexisting or merged attractors in between. Ther
some numerical evidence that, indeed, the second situati
valid.

The development of the two attractors as a function oa
can also be observed in the Lyapunov exponents. Figu

FIG. 10. Time development of the mean amplitudesr 1

5Az1
21z2

2 andr 25Az3
21z4

2 of the two oscillators in the mode pic
ture after the time-delay control has been switched off. The tra
tory remains in the basin of attraction of attractor 1 untilt.9500.
At this point, it quickly moves into the basin of attraction of attra
tor 2, and never returns to attractor 1 afterwards~parameters:N
55, a50.12,«50.1, b54, andd52!.
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shows the Lyapunov exponents of attractor 1 except for
intervalaP@0.9,0.115#, where attractor 1 does not exist. Th
sequence of periodicity, quasiperiodicity with periodic wi
dows, and chaos can clearly be seen. Fora.0.115, the GRS
is hyperchaotic@6#. In Fig. 11, the phase-space projections
the hyperchaotic attractor ata50.3 are shown. Interestingly
the second Lyapunov exponent becomes positive in the
cinity of the second and third crises. From that point, t
three largest Lyapunov exponents grow more or less line
with a ~except for a small periodic window ata.0.23!. The
GRS in this range ofa can no longer be regarded as a pe
turbed Ro¨ssler system in any projection. Oscillator (z1 ,z2)
gradually ceases to be dominant, and the dynamics of
GRS seems more and more irregular. Ata.0.17, the third
Lyapunov exponent becomes positive. The Lyapunov dim
sion of the attractor is larger than 4. However, no qualitat
change of the dynamics could be observed at this point,
ther in the bifurcation diagrams or in the phase-space pro
tions.

B. Numerical study of the caseN57

We now proceed to show that the GRS does behave
similar manner in the caseN57. In the mode picture, the
seven-dimensional GRS consists of three oscillators cou
via the nonlinear triggerx7 .

If one compares the bifurcation diagram~Fig. 12! and the
corresponding Lyapunov spectrum~Fig. 13! with those of
N55 ~Figs. 3 and 4, respectively!, one perceives a striking
resemblance. There are three coexisting attractors for lo
a (aP@0,0.05#), corresponding to the three oscillators of th
seven-dimensional GRS. Two of these attractors vanish
boundary crises in an intermediate regime of interacting
tractors (aP@0.06,0.115#). Finally, only one attractor re-
mains, which is hyperchaotic with an increasing number
positive Lyapunov exponents.

For aP@0,0.05#, each of the three attractors can be ch
acterized by the dominance of one of the three oscillato
Each attractor develops as a result of the instability of
fixed point (x(1),xN

(1)) corresponding to the respective dom
nant oscillator. This oscillator triggersx7 , while the other
two oscillators have a small amplitude. Onattractor 1, os-
cillator (z1 ,z2) is dominant; onattractor 2, it is oscillator
(z3 ,z4); and, onattractor 3, oscillator (z5 ,z6). As long as
the attractors are periodic~e.g., for aP@0.006,0.04# on at-
tractor 1! the mode locking is kept up by phase shifts in t

c-
FIG. 11. Hyperchaotic orbit forN55; projec-
tions onto~a! oscillator (z1 ,z2) and x5 , and ~b!
oscillator (z3 ,z4) and x5 ~parameters:a50.3, «
50.1, b54, andd52!.
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56 5077HYPERCHAOS IN THE GENERALIZED RO¨ SSLER SYSTEM
two oscillators with the small amplitude as in the caseN
55. Most remarkably, on all three attractors, the dynamic
qualitatively equal to that of the Ro¨ssler system in the pro
jection onto the respective dominant oscillator together w
the nonlinear variablex7 , i.e., in a three-dimensional projec
tion of the seven-dimensional phase space@compare Figs.
14~a! and 14~b! for the period-1 orbit on attractor 2, an
Figs. 14~c! and 14~d! for a chaotic orbit on attractor 2#.
Again, the existence,form, and location in phase space of
three attractors can be interpreted as a manifestation o
structural symmetry. They appear as mirror images of e
other under the symmetry operation of an exchange of
dominant oscillator with one of the other oscillators. For e
ample, attractor 1 would be obtained from attractor 2 by
transformationz1↔z3 , z2↔z4 .

For small values ofa, the dominant oscillator of each o
the attractors has a large amplitude, while the other two

FIG. 12. Bifurcation diagram forN57: attractors 1, 2, and 3
from bottom to top in different shadings. The values ofx6 at the
maxima ofx6 are shown~parameters:«50.1, b54, andd52!.
is

h
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he
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cillators remain small. That means the three attractors
located in phase space close to the subspace of the respe
dominant oscillator together with the nonlinear triggerx7 .
Thus they are clearly separate from each other. With incre
ing a, the attractors grow and begin to interact. First, attr
tor 3 vanishes ata.0.052 in a boundary crisis, where
collides with the separatrix to the basin of attractor 1. Attra
tor 1 also loses stability ata.0.06, such that only attractor
remains stable. Finally, ata50.11, a third crisis occurs
which leaves a large attractor that encompasses the dyna
of all three attractors. In general, the motion from one attr
tor to the other is much slower than the motion on the attr
tors ~compare Fig. 10!.

In Fig. 13, the Lyapunov exponents as a function ofa are
shown. Fora,0.06, the GRS is on attractor 1. In thegre
shaded regionaP@0.06,0.115#, the GRS revolves on attrac
tor 2. Fora.0.115, the Lyapunov exponents of the rema
ing hyperchaotic attractor can be seen. Here, the Lyapu
exponents grow approximately linear witha, similar to the
caseN55.

FIG. 13. Lyapunov spectrum forN57: depicted is the develop
ment on attractor 1 up toa50.06, that on attractor 2 froma
50.06 to 0.11~grey-shaded!, and that abovea50.11 on the re-
maining large attractor.
:

FIG. 14. ~a!–~c! Periodic orbit forN57 and

a50.035 on attractor 2 with 1:1:1 mode locking
projections onto~a! oscillator (z1 ,z2) andx7 , ~b!
oscillator (z3 ,z4) and x7 , and ~c! oscillator
(z5 ,z6) and x7 . ~d!–~f! Chaotic orbit forN57
anda50.095 on attractor 2; projections onto~d!
oscillator (z1 ,z2) and x7 , ~e! oscillator (z3 ,z4)
and x7 , and ~f! oscillator (z5 ,z6) and x7 ~other
parameters:«50.1, b54, andd52!.
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FIG. 15. Time development of the GRS fo
N561. The amplitudes of the variablesx2n21 are
shown in grey scale as a function of time for~a!
a50.03, ~b! a50.07, and~c! a50.15 ~other pa-
rameters:«50.1, b54, andd52!.
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C. Dynamics for arbitrary odd dimension N

We have demonstrated how the dynamics of the GRS
the casesN55 and 7 can be understood within the sam
scheme of coexisting attractors. We expect that the dynam
of the GRS behaves in an analogous way for every odd
mensionN. Thus, we expect, in general, (N21)/2 coexist-
ing attractors for small values ofa. On each of the attractors
one of the oscillators of the mode picture will be domina
Each attractor will be located close to the hyperplane of
respective dominant oscillator together with the nonlin
trigger. The other oscillators will have a negligible amp
tude. In the projection onto the dominant oscillator toget
with the nonlinear triggerxN , the dynamics will be Ro¨ssler-
like. For higher values ofa, the attractors will grow in phase
space and interact with each other in several crises. Eve
ally, one hyperchaotic attractor will remain, which exten
over all of the phase space that was occupied by theN
21)/2 coexisting attractors.

For clarity, we briefly discuss the dynamics of the GR
inphase space for a higher number of variables,N561. To
this end, we use a pseudo-space-time representation o
dynamics in Fig. 15 for three different values ofa. The
values of every second variablex2n11 ,n50, . . . ,30, are de-
picted in grey scale as a function of time. In order to ens
that the dynamics has settled on the attractor, the GRS
propagated for a transient time 500 000, which correspo
to about 10 000 revolutions of the slowest oscillator forN
5 61. A periodic orbit fora50.04 is visualized in Fig. 15~a!.
In the mode picture, the mean amplitudes of the five do
nant oscillators are 1.30, 1.16, 1.12, 0.40, 0.11, 0.05,
0.04. The amplitudes of the other oscillators are smaller t
0.01. Obviously, the dynamics is not dominated by a sin
oscillator, suggesting that the coexisting periodic orbits h
undergone oneor more merging crises before losing their
bility. In Fig. 15~b!, a comparatively low-dimensional cha
otic orbit close to the above periodic one@Fig. 15~b!# is
shown. It has been calculated fora50.07. The trace of the
periodic orbit can still be seen in the image. Additionally
considerable activity of high-frequency modes can be p
ceived as well. The largest Lyapunov exponents
in
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0.000 21, 0.000 17, 0.000 14,0.000 10, 0.000 09, 0.000
0.000 08, 0.000 02, 0.000 01,20.000 01,20.000 03, and
20.000 05. From this, the Lyapunov dimension is estima
to beD520.8 with the help of the Kaplan-Yorke conjectu
@10#. In this state, the GRS does not explore all of its pha
space and several other coexisting chaotic attractors ca
found, which are not shown here. Figure 15~c! shows a snap-
shot fora50.15, which lies in the hyperchaotic regime. He
no coherent structure can be perceived. This state ha
positive Lyapunov exponents, and a Lyapunov dimension
D560. In this state, the hyperchaotic attractor extends to
of the phase space and no coexisting attractor can be fo

For large values ofN, the GRS is similar to a time dela
system of the formẏ(t)5 f „y(t2t)…1g„y(t)…, as investi-
gated, e.g., in Refs.@11–17#. This can clearly be seen in Fig
15. The linear subsystemx acts as a delay line, that mere
transports signals back and forth between the positive fe
back process, represented byx1 , and the nonlinear trigge
xN . The delay time of the GRS is approximatelyN ~see Sec.
III A !. The difference between the GRS and a time de
system is that the GRS—as a spatially discrete system—
a nonlinear dispersion relationv(k). As every mode of the
GRS is active for values ofa in the hyperchaotic regime, th
dispersion relation cannot be neglected in that case. Thus
function f would have to be replaced by a functional iny(t
2Dt), with Dt.N. Still, the GRS has got the same bas
structure as a time delay system. We arrive at identical s
ing properties of the Lyapunov exponents, the Lyapunov
mension, and the metric entropy forN→`, as will be shown
in Sec.V.

V. PROPERTIES OF THE GENERALIZED RÖ SSLER
SYSTEM UNDER VARIATION OF SYSTEM SIZE N

Up to now, we have investigated the dynamics of t
GRS in phase space under variation of the control param
a for thecasesN55 and 7. In the present section, we inve
tigate the GRS as a function ofN for four fixed values ofa:
a50.3, 0.25, 0.15, and 0.07. The first three values ofa are in
the regime of large, phase-space-filling hyperchaotic attr
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56 5079HYPERCHAOS IN THE GENERALIZED RO¨ SSLER SYSTEM
tors, and the fourth value ofa lies in the regime oflow-
dimensional, coexisting attractors.N is varied from 3 to 61.
Here, we mainly focus on the numerical calculation
Lyapunov exponents, from which the Lyapunov dimens
Dl and the metric entropyH are estimated. The Lyapuno
exponents have been calculated with the fixed initial con
tion (x,xN)5(1,0, . . . ,0,0). The other parameters are aga
chosen to be«50.1,b54, andd52. Interpreting the dimen-
sionality N of the GRS as system size, we compare the
sults to the thermodynamic limes of homogeneous, spati
extended systems, where the number of positive Lyapu
exponents, the Lyapunov dimension, and the metric entr
are reported to be proportional toN @18–22#. In this case, the
distribution of Lyapunov exponents has been reported to
proach a limit functionf , i.e.,l i5 f ( i /V), if V is the system
size @23#. In the next step, we draw the attention to t
GRS’s similarity to time-delay systems, where the Lyapun
dimension has been reported to be proportional to the d
time, while the metric entropy approaches a limit value
increasing delay time@11#.

Figure 16 shows the number of positive Lyapunov exp
nentsN1, the Lyapunov dimensionDl ~estimated via the
Kaplan-Yorke relation@10#! and the metric entropyH ~esti-
mated via the Pesin formula@24#! as a function ofN for the
four values ofa. The number of positive Lyapunov expo
nents N1 and the Lyapunov dimensionDl grow linearly
with N. Remarkably, the Lyapunov dimensionDl is maxi-
mal up to its fractional part~i.e., Dl.N21! for almost all

FIG. 16. ~a! Number of positive Lyapunov exponents,~b!
Lyapunov dimension, and~c! metric entropy as a function ofN for
a50.3, 0.25, 0.15, and 0.07~other parameters:«50.1, b54, and
d52!.
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odd dimensionsN, as long as the GRS is in the hyperchao
regime ~large enougha!. The metric entropy approaches
limit value H` for largeN. Therefore, the Lyapunov expo
nents decrease proportional to 1/N. Note that this observa
tion is not so clear cut fora50.07, probably due to the fac
that the chosen initial condition lies within the basin of a
traction of different attractors for different values ofN.
Therefore, we find that the limesN→` of the GRS is similar
to the limes of an increasing delay time of time-delay s
tems and is not similar to the thermodynamic limes of h
mogeneous, spatially extended systems. Recently, the
stancy of the metric entropy of time-delay systems
increasing delay time has been attributed to the constanc
the number of localized nonlinearities@17#. The same idea
applies to the GRS. In Sec. II, we distinguished betwee
linear, (N21) dimensional subsystem (x1 ,...,x(N21)) and a
one-dimensional nonlinear subsystem~the trigger variable
xN!. The linear subsystem (x2 ,...,x(N21)) ~without the posi-
tive feedback process present inx1! allows only for a linear,
bidirectional transport of signals and is, therefore, not able
initiate any unstable behavior~see Fig. 15!. In the case of the
GRS, it is the one-dimensional localized nonlinearityxN @17#
~together withx1!, which allows for a nonlinear stretchin
and folding in phase space and is solely responsible for
positive metric entropy. As in the case of time-delay sy
tems, we expect the value of the metric entropyH for in-
creasingN to depend only on the number of localized no
linearities, which is equal to one for the GRS, and the r
with which the information is processed, which is estimat
via the correlation timetc . Therefore, we hypothesize tha
the metric entropy scales like

H}
1

tc
~10!

for N→`. Since in the hyperchaotic case the correlati
time is expected to be independent ofN ~see Sec. III A!, Eq.
~10! reproduces the limit behavior of the metric entropy
the GRS. In the case of homogeneous, spatially exten
systems, we expect the number of localized nonlinearitie
increase proportionally with the system size. This leads t
proportional increase of the metric entropy with the syst
size, as has been observed in several models.

Thus we conjecture that the high-dimensional chaotic m
tion observed in the GRS is fundamentally different co
pared to the spatiotemporal chaos observed in homogene
spatially extended systems. Here the difference is expre
in terms of the number of localized nonlinearities a syst
possesses in phase space. In the case of the GRS, the nu
of the localized nonlinearities is independent of the cont
parameters including the system size. In the case of ho
geneous and nonlinear spatially extended systems, the n
ber of localized nonlinearities is expected to grow prop
tional to the system size.

In Table I, we show the limit valueH` for different val-
ues ofa. Additionally, the value ofH` normalized to the
autocatalytic coefficienta is shown. Note that the value ofa
is an upper bound for the sum of the positive Lyapun
exponents and, with this, to the estimated metric entropyH.
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5080 56TH. MEYER, M. J. BÜNNER, A. KITTEL, AND J. PARISI
The casea5H` corresponds to an unbounded, linear,N
21) dimensional system, (x1 ,x2 ,...,xN21) in the absence o
the localized nonlinearityxN .

From Table I, we infer that the limit value of the metr
entropy,H` , comes closer to its upper bounda for an in-
creasing value ofa, indicating that the hyperchaotic attra
tors increasingly exploit all the unstable directions availab
In the following, we examine the distribution of Lyapuno
exponents as a function ofN. If one is to compare the
Lyapunov exponents of different systems, one faces
problem that the absolute values of them depend on the
sen time scale. In systems with many different characteri
times, like the GRS, it is not obvious which time scale to u
Above, the time scale for the GRS under variation ofN has
been chosen such that the highest frequency of the lin
subsystemvmax is approximately equal to 2.0@see Eq.~5!#.
In this case, we expect the correlation timetc to be approxi-
mately constant for different values ofN, while the timets a
signal needs to traverse the linear subsystem (x1 ,...,x(N21))
increases proportionally toN. In the analysis to follow, we
choose the time scale such that the rescaled mean pos
Lyapunov exponent is equal to 1. The rescaled Lyapu
exponentsls are defined as

ls5
N1

Sl1 l, ~11!

where Sl1 denotes the sum over the positive Lyapun
exponents, i.e., the metric entropy, andN1 denotes the num
ber of positive Lyapunov exponents. Using the time sc
according to Eq.~11!, the maximal frequency of the GR
scales likevmax'2(N1/H). AssumingN1'N and H→H`

for high enougha, we find vmax}N/H` . From this the cor-
relation time is estimated to decrease withN in the hyper-
chaotic case liketc}H` /N. The same argument applies
the scaling of the velocity of signals yieldingv}N/H` . This
leads us to observe that the rescaling of the time accordin
Eq. ~11! makes the timets5N/v a signal needs to travers
the linear subsystem independent of the system sizeN for
sufficiently large values ofa.

In Fig. 17, the distribution of the rescaled Lyapunov e
ponents is shown for different values ofN for a50.25. The
Lyapunov exponents are sorted in descending order. The
tributions converge to a limit distribution,ls,i5 f ( i /N), with
increasingN. We observe qualitatively the same behav
for all values ofa. Note that, although the existence of
limit distribution f has also been shown for homogeneo
spatially extended systems, the limes of an increasing sys

TABLE I. Limit value of the metric entropyH for different
values ofa.

a

H` H`

a

0.3 0.2 0.7
0.25 0.16 0.6
0.15 0.08 0.5
0.07 0.02 0.3
0.03 0.0 0.0
.
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sizeN for the rescaled Lyapunov exponents~11! is consid-
erably different from the thermodynamic limes of spatia
extended systems. In the latter case, the correlation tim
approximately independent of the system size, while in
case of the GRS the correlation time decreases proporti
to the system sizeN.

In delayed dynamical systems with an expansive lo
dynamics~local in time!, there has been reported the ex
tence of ‘‘anomalous’’ Lyapunov exponents@25,15# which
do not scale like 1/N for N→`, but remain at a finite value
Considering the similarity of the GRS with a delayed syst
and the expansive term present inẋ15ax12x2 , one may
expect to observe such an anomalous Lyapunov exponen
a.0. However, due to the fact that the linear subsyst
transports energy~in the form of squared amplitudes! away
from x1 , the local dynamics of the beginning of the line
subsystem is that of a damped oscillator for all values oa
considered in this paper. For values ofa sufficiently large
such that the local dynamics does indeed become expan
the GRS is globally unstable, as the nonlinear trigger is
longer able to keep the amplitudes of the linear subsys
bounded. Accordingly, no sign of an anomalous Lyapun
exponent~i.e., a Lyapunov exponent that does not scale l
1/N! could be seen in any of the spectra calculated for
present work.

Finally, we would like to discuss the shape of the lim
distribution f of the rescaled Lyapunov exponents. We ha
observed above that the limit value of the metric entro
H` , approaches its upper bounda for an increasing value o
a as a direct consequence of the dynamics increasingly
ploiting all unstable directions of the unstable fixed po
(x(1),xN

(1)). We find that the same idea applies to t
Lyapunov spectra: For an increasingly hyperchaotic attra
~increasing value ofa!, the Lyapunov spectra gain similarit
with the real parts of the eigenvalues of the unstable fix
point (x(1),xN

(1)). In Fig. 18, we show the Lyapunov spect
for three different values ofa ~fixed dimensionN561! to-
gether with the real parts of the eigenvalues of the fixed po
according to Eq.~5!. In all cases, the time scale has be
chosen such that the trace of the matrixA equals 1.

FIG. 17. Distribution of rescaled Lyapunov exponentsls

5(N1/Sl1
)l for different N ~N515, 21, 41, and 61!. The

Lyapunov exponents are sorted in descending order~parameters:
a50.3, «50.1, b54, andd52!.



n
ao
f
e
b
e

to
ar
re
o

th
ng
,
c

.
al
tiv
dy
h

p
th

th
th

n

tr

m
ea
p-
in
ic
en
ss

n-

ys-
y-
path
ed
sce-
d
uld
ible

e
ich
of

e of
the
gi-
uc-
las-

.
t
gs-

ge-
h-
tial
te-
tep
p-

r-
u-
m.
m
d
ou-
ts.
hm

e of

mic
ov

te-
ine
the

and
d-

ay
be

th
he
e

56 5081HYPERCHAOS IN THE GENERALIZED RO¨ SSLER SYSTEM
VI. DISCUSSION AND CONCLUSION

We investigated the GRS as a model for high-dimensio
chaos as the latter emerges out of low-dimensional ch
One important feature of the GRS is that it consists o
linear subsystem with a variable number of degrees of fr
dom together with one nonlinear trigger. The linear su
system can be solved analytically. Utilizing the eigenmod
of the linear subsystem, one can transform the GRS in
mode picture, consisting of harmonic oscillators that
coupled only via the nonlinear trigger. The mode pictu
reveals a structural symmetry of the GRS. With the aid
this structural symmetry, we interpret the dynamics of
casesN55 and 7 within a general scheme of coexisti
attractors. For small values ofa, there is, for each attractor
a specific projection into a three-dimensional subspa
where the dynamics of the GRS is Ro¨ssler-like. The attrac-
tors expand with increasinga and interact in several crises
This parameter regime of interacting attractors eventu
leaves one large hyperchaotic attractor with many posi
Lyapunov exponents. Even such kind of hyperchaotic
namics can be made accessible to the human mind, whic
used to envisage in three spatial dimensions, with the hel
three-dimensional projections onto the oscillators of
mode picture.

In the second part of this paper, we investigated
Lyapunov exponents and related chaotic indicators of
GRS in the limit of large values ofN, mainly in the hyper-
chaotic regime. The number of positive Lyapunov expone
and the Lyapunov dimension grow linearly withN. The
Lyapunov dimension is maximal,Dl'N, independently of
a, as long as one is in the hyperchaotic regime. The me
entropy converges to a limit value for increasingN. If the
time is rescaled in such a way that the signal traveling ti
through the linear subsystem remains constant with incr
ing N, the distribution of the Lyapunov exponents a
proaches a limit function and the metric entropy grows l
early with N for N→`. We argued that the hyperchaot
dynamics observed in the GRS is fundamentally differ
from spatiotemporal chaos. In this paper, we have expre

FIG. 18. Comparison of the real parts of the eigenvalues of
linear subsystema i and the Lyapunov exponents of the GRS in t
caseN561 for a50.07, 0.15, and 0.25. Here, all values have be
divided by the respective values ofa, in order to get comparable
values for differenta. ~other parameters:«50.1, b54, andd52!.
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this difference in terms of the number of localized nonli
earities.

In Sec. I, we raised the question of how dynamical s
tems develop from low-dimensional chaotic behavior to h
perchaotic states. In the GRS, one observes one specific
through the chaotic hierarchy, starting from a stable fix
point over chaos up to hyperchaos. The GRS exhibits a
nario of coexisting Ro¨ssler-like attractors that interact an
eventually merge to form a hyperchaotic attractor. We wo
like to emphasize that the GRS only realizes one poss
way, ending up with one special form of hyperchaos. W
feel that there are many different forms of hyperchaos wh
possibly cannot be sufficiently characterized with the help
Lyapunov exponents. In the case of the GRS, the structur
the system has provided a helpful scheme to interpret
dynamics. We believe that the investigation of the topolo
cal structure of the flow and, specifically, the attractor str
ture and the interaction of attractors, could be used to c
sify high-dimensional chaotic dynamics in general.
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APPENDIX: NUMERICAL ALGORITHMS APPLIED

The differential equations were integrated using a Run
Kutta triple @26#. This algorithm takes advantage of a sixt
order formula to propagate a system of ordinary differen
equations. A fifth-order formula is used to estimate the in
gration error and, additionally, for each Runge-Kutta s
tn→tn11 , the algorithm calculates a polynomial that a
proximates the solution on the whole interval@ tn ,tn11# up to
an error of fifth order. The tolerance was set to 10210.

The Poincare´ sections were obtained via parabolic inte
polation in the vicinity of the intersection points. To calc
late the bifurcation diagrams, we utilized a simple algorith
For each value ofa, we started with the state of the syste
for the last value ofa, let the system adjust to the change
parameter value for a transient time equivalent to some th
sand revolutions, and then recorded the intersection poin

Lyapunov exponents were calculated using the algorit
described in Refs.@27–29#. This algorithm tracks the time
development of an orthonormal basis in the tangent spac
phase space. At regular time intervals~DT550 in our case!,
the vectors are reorthonormalized. The mean logarith
growth rates of the moduli of the vectors are the Lyapun
exponents.

The delay equation of the time-delayed control was in
grated by the same Runge-Kutta triple, using the spl
polynoms that the Runge-Kutta triple outputs to record
continuous history of (x,xN). The control acts on all vari-
ables of the system. We chose a gain factor of 0.05
limited the control signal to 25% of the modulus correspon
ing time derivative of the uncontrolled GRS. For the del
time t, we chose the eigenfrequency of the oscillator to
stabilized and, subsequently, adjustedt to minimize the
mean control signal.
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